Suppr超能文献

在微流控流中培养胰岛会增强相关内皮细胞的形态。

Culturing pancreatic islets in microfluidic flow enhances morphology of the associated endothelial cells.

机构信息

Department of Physiology, University of Toronto, Toronto, Ontario, Canada.

出版信息

PLoS One. 2011;6(9):e24904. doi: 10.1371/journal.pone.0024904. Epub 2011 Sep 22.

Abstract

Pancreatic islets are heavily vascularized in vivo with each insulin secreting beta-cell associated with at least one endothelial cell (EC). This structure is maintained immediately post-isolation; however, in culture the ECs slowly deteriorate, losing density and branched morphology. We postulate that this deterioration occurs in the absence of blood flow due to limited diffusion of media inside the tissue. To improve exchange of media inside the tissue, we created a microfluidic device to culture islets in a range of flow-rates. Culturing the islets from C57BL6 mice in this device with media flowing between 1 and 7 ml/24 hr resulted in twice the EC-density and -connected length compared to classically cultured islets. Media containing fluorescent dextran reached the center of islets in the device in a flow-rate-dependant manner consistent with improved penetration. We also observed deterioration of EC morphology using serum free media that was rescued by addition of bovine serum albumin, a known anti-apoptotic signal with limited diffusion in tissue. We further examined the effect of flow on beta-cells showing dampened glucose-stimulated Ca(2+)-response from cells at the periphery of the islet where fluid shear-stress is greatest. However, we observed normal two-photon NAD(P)H response and insulin secretion from the remainder of the islet. These data reveal the deterioration of islet EC-morphology is in part due to restricted diffusion of serum albumin within the tissue. These data further reveal microfluidic devices as unique platforms to optimize islet culture by introducing intercellular flow to overcome the restricted diffusion of media components.

摘要

胰岛在体内有丰富的血管分布,每个分泌胰岛素的β细胞都至少与一个内皮细胞(EC)相关。这种结构在分离后立即得到维持;然而,在培养中,EC 会缓慢恶化,密度降低,分支形态消失。我们假设这种恶化是由于组织内介质的扩散有限,导致血流不足而发生的。为了改善组织内介质的交换,我们创建了一种微流控装置,以在一系列流速下培养胰岛。将 C57BL6 小鼠的胰岛在该装置中培养,使培养基在 1 至 7ml/24 小时之间流动,结果与经典培养的胰岛相比,EC 密度和连接长度增加了一倍。含荧光葡聚糖的培养基以流速依赖的方式到达装置中胰岛的中心,这与改善的渗透一致。我们还观察到在无血清培养基中 EC 形态恶化,而添加牛血清白蛋白(一种已知的抗凋亡信号,在组织中扩散有限)可挽救这种恶化。我们进一步研究了流动对β细胞的影响,发现细胞边缘处的胰岛细胞(那里的流体剪切应力最大)的葡萄糖刺激 Ca(2+)-反应受到抑制。然而,我们观察到胰岛其余部分的双光子 NAD(P)H 反应和胰岛素分泌正常。这些数据表明,胰岛 EC 形态的恶化部分是由于组织内白蛋白的扩散受限所致。这些数据进一步表明,微流控装置是优化胰岛培养的独特平台,可以通过引入细胞间流动来克服介质成分的扩散限制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b77/3178551/0bd4dc8ab8b1/pone.0024904.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验