Suppr超能文献

激活似然估计元分析再探。

Activation likelihood estimation meta-analysis revisited.

机构信息

Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany.

出版信息

Neuroimage. 2012 Feb 1;59(3):2349-61. doi: 10.1016/j.neuroimage.2011.09.017. Epub 2011 Sep 22.

Abstract

A widely used technique for coordinate-based meta-analysis of neuroimaging data is activation likelihood estimation (ALE), which determines the convergence of foci reported from different experiments. ALE analysis involves modelling these foci as probability distributions whose width is based on empirical estimates of the spatial uncertainty due to the between-subject and between-template variability of neuroimaging data. ALE results are assessed against a null-distribution of random spatial association between experiments, resulting in random-effects inference. In the present revision of this algorithm, we address two remaining drawbacks of the previous algorithm. First, the assessment of spatial association between experiments was based on a highly time-consuming permutation test, which nevertheless entailed the danger of underestimating the right tail of the null-distribution. In this report, we outline how this previous approach may be replaced by a faster and more precise analytical method. Second, the previously applied correction procedure, i.e. controlling the false discovery rate (FDR), is supplemented by new approaches for correcting the family-wise error rate and the cluster-level significance. The different alternatives for drawing inference on meta-analytic results are evaluated on an exemplary dataset on face perception as well as discussed with respect to their methodological limitations and advantages. In summary, we thus replaced the previous permutation algorithm with a faster and more rigorous analytical solution for the null-distribution and comprehensively address the issue of multiple-comparison corrections. The proposed revision of the ALE-algorithm should provide an improved tool for conducting coordinate-based meta-analyses on functional imaging data.

摘要

一种广泛应用于神经影像学数据的基于坐标的荟萃分析技术是激活似然估计(ALE),它确定了来自不同实验的焦点的收敛性。ALE 分析涉及将这些焦点建模为概率分布,其宽度基于神经影像学数据的个体间和模板间变异性的空间不确定性的经验估计。ALE 结果与实验之间随机空间关联的零分布进行评估,从而进行随机效应推断。在本算法的修订版中,我们解决了之前算法中仍然存在的两个缺陷。首先,实验之间的空间关联的评估是基于高度耗时的置换检验,尽管如此,这仍然存在低估零分布右尾的危险。在本报告中,我们概述了如何用更快和更精确的分析方法替代以前的方法。其次,以前应用的校正程序,即控制假发现率(FDR),通过新的方法来校正总体错误率和簇级显著性。在面部感知的示例数据集上评估了对荟萃分析结果进行推断的不同替代方法,并就其方法学局限性和优点进行了讨论。总之,我们用更快和更严格的零分布分析解决方案替代了以前的置换算法,并全面解决了多重比较校正的问题。ALE 算法的这个修订版应该为在功能成像数据上进行基于坐标的荟萃分析提供一个改进的工具。

相似文献

1
Activation likelihood estimation meta-analysis revisited.
Neuroimage. 2012 Feb 1;59(3):2349-61. doi: 10.1016/j.neuroimage.2011.09.017. Epub 2011 Sep 22.
3
Behavior, sensitivity, and power of activation likelihood estimation characterized by massive empirical simulation.
Neuroimage. 2016 Aug 15;137:70-85. doi: 10.1016/j.neuroimage.2016.04.072. Epub 2016 May 11.
4
Minimizing within-experiment and within-group effects in Activation Likelihood Estimation meta-analyses.
Hum Brain Mapp. 2012 Jan;33(1):1-13. doi: 10.1002/hbm.21186. Epub 2011 Feb 8.
5
Coordinate based meta-analysis of functional neuroimaging data; false discovery control and diagnostics.
PLoS One. 2013 Jul 29;8(7):e70143. doi: 10.1371/journal.pone.0070143. Print 2013.
6
Assessing robustness against potential publication bias in Activation Likelihood Estimation (ALE) meta-analyses for fMRI.
PLoS One. 2018 Nov 30;13(11):e0208177. doi: 10.1371/journal.pone.0208177. eCollection 2018.
8
Evaluation of thresholding methods for activation likelihood estimation meta-analysis via large-scale simulations.
Hum Brain Mapp. 2022 Sep;43(13):3987-3997. doi: 10.1002/hbm.25898. Epub 2022 May 10.
9
Meta-analytic connectivity modeling revisited: controlling for activation base rates.
Neuroimage. 2014 Oct 1;99:559-70. doi: 10.1016/j.neuroimage.2014.06.007. Epub 2014 Jun 16.
10
A novel meta-analytic approach: mining frequent co-activation patterns in neuroimaging databases.
Neuroimage. 2014 Apr 15;90:390-402. doi: 10.1016/j.neuroimage.2013.12.024. Epub 2013 Dec 21.

引用本文的文献

4
Brain changes associated with depression treatment: a meta-analysis.
Neuroimage Clin. 2025 Aug 28;48:103874. doi: 10.1016/j.nicl.2025.103874.
8
On joy and sorrow: Neuroimaging meta-analyses of music-induced emotion.
Imaging Neurosci (Camb). 2025 Jan 16;3. doi: 10.1162/imag_a_00425. eCollection 2025.
9
Predictive modeling of significance thresholding in activation likelihood estimation meta-analysis.
Imaging Neurosci (Camb). 2025 Jan 10;3. doi: 10.1162/imag_a_00423. eCollection 2025.
10
Consistent activation differences versus differences in consistent activation: Evaluating meta-analytic contrasts.
Imaging Neurosci (Camb). 2024 Nov 8;2. doi: 10.1162/imag_a_00358. eCollection 2024.

本文引用的文献

1
Minimizing within-experiment and within-group effects in Activation Likelihood Estimation meta-analyses.
Hum Brain Mapp. 2012 Jan;33(1):1-13. doi: 10.1002/hbm.21186. Epub 2011 Feb 8.
2
Meta-analytical comparison of voxel-based morphometry studies in obsessive-compulsive disorder vs other anxiety disorders.
Arch Gen Psychiatry. 2010 Jul;67(7):701-11. doi: 10.1001/archgenpsychiatry.2010.70.
3
A unified statistical approach for determining significant signals in images of cerebral activation.
Hum Brain Mapp. 1996;4(1):58-73. doi: 10.1002/(SICI)1097-0193(1996)4:1<58::AID-HBM4>3.0.CO;2-O.
4
Investigating the functional heterogeneity of the default mode network using coordinate-based meta-analytic modeling.
J Neurosci. 2009 Nov 18;29(46):14496-505. doi: 10.1523/JNEUROSCI.4004-09.2009.
5
Voxel-wise meta-analysis of grey matter changes in obsessive-compulsive disorder.
Br J Psychiatry. 2009 Nov;195(5):393-402. doi: 10.1192/bjp.bp.108.055046.
6
ALE Meta-Analysis Workflows Via the Brainmap Database: Progress Towards A Probabilistic Functional Brain Atlas.
Front Neuroinform. 2009 Jul 9;3:23. doi: 10.3389/neuro.11.023.2009. eCollection 2009.
8
Meta-analysis of functional neuroimaging data: current and future directions.
Soc Cogn Affect Neurosci. 2007 Jun;2(2):150-8. doi: 10.1093/scan/nsm015.
9
The human inferior parietal lobule in stereotaxic space.
Brain Struct Funct. 2008 Aug;212(6):481-95. doi: 10.1007/s00429-008-0195-z. Epub 2008 Jul 24.
10
False discovery rate revisited: FDR and topological inference using Gaussian random fields.
Neuroimage. 2009 Jan 1;44(1):62-70. doi: 10.1016/j.neuroimage.2008.05.021. Epub 2008 May 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验