Department of Psychology, Columbia University, 1190 Amsterdam Ave, New York, NY 10027, USA.
Soc Cogn Affect Neurosci. 2007 Jun;2(2):150-8. doi: 10.1093/scan/nsm015.
Meta-analysis is an increasingly popular and valuable tool for summarizing results across many neuroimaging studies. It can be used to establish consensus on the locations of functional regions, test hypotheses developed from patient and animal studies and develop new hypotheses on structure-function correspondence. It is particularly valuable in neuroimaging because most studies do not adequately correct for multiple comparisons; based on statistical thresholds used, we estimate that roughly 10-20% of reported activations in published studies are false positives. In this article, we briefly summarize some of the most popular meta-analytic approaches and their limitations, and we outline a revised multilevel approach with increased validity for establishing consistency across studies. We also discuss multivariate methods by which meta-analysis can be used to develop and test hypotheses about co-activity of brain regions. Finally, we argue that meta-analyses can make a uniquely valuable contribution to predicting psychological states from patterns of brain activity, and we briefly discuss some methods for making such predictions.
元分析是一种越来越流行且有价值的工具,可用于总结许多神经影像学研究的结果。它可用于就功能区域的位置达成共识,检验从患者和动物研究中得出的假设,并对结构-功能对应关系提出新的假设。它在神经影像学中特别有价值,因为大多数研究都没有充分纠正多重比较;根据使用的统计阈值,我们估计在已发表的研究中,大约有 10-20%的报告激活是假阳性的。在本文中,我们简要总结了一些最流行的元分析方法及其局限性,并概述了一种经过修订的多层次方法,该方法可提高研究之间一致性的有效性。我们还讨论了可以使用多元方法通过元分析来发展和检验关于大脑区域共同活动的假设。最后,我们认为元分析可以为从大脑活动模式预测心理状态做出独特而有价值的贡献,我们简要讨论了一些进行此类预测的方法。