Suppr超能文献

睡眠慢波振荡中的快、慢纺锤波:记忆加工中不同的融合和参与。

Fast and slow spindles during the sleep slow oscillation: disparate coalescence and engagement in memory processing.

机构信息

Department of Neuroendocrinology, University of Lübeck, Lübeck, Germany.

出版信息

Sleep. 2011 Oct 1;34(10):1411-21. doi: 10.5665/SLEEP.1290.

Abstract

STUDY OBJECTIVES

Thalamo-cortical spindles driven by the up-state of neocortical slow (< 1 Hz) oscillations (SOs) represent a candidate mechanism of memory consolidation during sleep. We examined interactions between SOs and spindles in human slow wave sleep, focusing on the presumed existence of 2 kinds of spindles, i.e., slow frontocortical and fast centro-parietal spindles.

DESIGN

Two experiments were performed in healthy humans (24.5 ± 0.9 y) investigating undisturbed sleep (Experiment I) and the effects of prior learning (word paired associates) vs. non-learning (Experiment II) on multichannel EEG recordings during sleep.

MEASUREMENTS AND RESULTS

Only fast spindles (12-15 Hz) were synchronized to the depolarizing SO up-state. Slow spindles (9-12 Hz) occurred preferentially at the transition into the SO down-state, i.e., during waning depolarization. Slow spindles also revealed a higher probability to follow rather than precede fast spindles. For sequences of individual SOs, fast spindle activity was largest for "initial" SOs, whereas SO amplitude and slow spindle activity were largest for succeeding SOs. Prior learning enhanced this pattern.

CONCLUSIONS

The finding that fast and slow spindles occur at different times of the SO cycle points to disparate generating mechanisms for the 2 kinds of spindles. The reported temporal relationships during SO sequences suggest that fast spindles, driven by the SO up-state feed back to enhance the likelihood of succeeding SOs together with slow spindles. By enforcing such SO-spindle cycles, particularly after prior learning, fast spindles possibly play a key role in sleep-dependent memory processing.

摘要

研究目的

由新皮层慢波(<1 Hz)振荡的上状态驱动的丘脑皮质纺锤波代表了睡眠期间记忆巩固的候选机制。我们在人类慢波睡眠中研究了 SOs 和纺锤波之间的相互作用,重点关注两种假定的纺锤波,即慢额皮质和快中顶纺锤波。

设计

在健康人类中进行了两项实验(24.5±0.9 岁),研究了未受干扰的睡眠(实验 I)以及先前学习(单词配对联想)与非学习(实验 II)对睡眠期间多通道 EEG 记录的影响。

测量和结果

只有快纺锤波(12-15 Hz)与去极化 SO 上状态同步。慢纺锤波(9-12 Hz)优先发生在 SO 下状态的转变期间,即在去极化减弱期间。慢纺锤波也显示出更高的跟随而不是先于快纺锤波的概率。对于单个 SO 的序列,快纺锤波活动在“初始”SO 中最大,而 SO 幅度和慢纺锤波活动在随后的 SO 中最大。先前的学习增强了这种模式。

结论

发现快和慢纺锤波在 SO 周期的不同时间发生,这表明这两种纺锤波具有不同的产生机制。在 SO 序列期间报告的时间关系表明,由 SO 上状态驱动的快纺锤波反馈以增强随后的 SO 与慢纺锤波一起发生的可能性。通过强制这种 SO-纺锤波循环,特别是在先前学习之后,快纺锤波可能在睡眠依赖的记忆处理中发挥关键作用。

相似文献

2
Spindle activity phase-locked to sleep slow oscillations.
Neuroimage. 2016 Jul 1;134:607-616. doi: 10.1016/j.neuroimage.2016.04.031. Epub 2016 Apr 18.
3
Coupling of gamma band activity to sleep spindle oscillations - a combined EEG/MEG study.
Neuroimage. 2021 Jan 1;224:117452. doi: 10.1016/j.neuroimage.2020.117452. Epub 2020 Oct 13.
7
Driving sleep slow oscillations by auditory closed-loop stimulation-a self-limiting process.
J Neurosci. 2015 Apr 29;35(17):6630-8. doi: 10.1523/JNEUROSCI.3133-14.2015.
9
Sleep Spindles Preferentially Consolidate Weakly Encoded Memories.
J Neurosci. 2021 May 5;41(18):4088-4099. doi: 10.1523/JNEUROSCI.0818-20.2021. Epub 2021 Mar 19.
10
Using Oscillating Sounds to Manipulate Sleep Spindles.
Sleep. 2017 Mar 1;40(3). doi: 10.1093/sleep/zsw068.

引用本文的文献

3
Sleep State Influences Early Sound Encoding at Cortical But Not Subcortical Levels.
J Neurosci. 2025 Aug 6;45(32):e0368252025. doi: 10.1523/JNEUROSCI.0368-25.2025.
8
Multi-region processing during sleep for memory and cognition.
Proc Jpn Acad Ser B Phys Biol Sci. 2025;101(3):107-128. doi: 10.2183/pjab.101.008.
9
Sleep selectively and durably enhances memory for the sequence of real-world experiences.
Nat Hum Behav. 2025 Apr;9(4):746-757. doi: 10.1038/s41562-025-02117-5. Epub 2025 Mar 11.
10
Regulation of peripheral glucose levels during human sleep.
Sleep. 2025 Jun 13;48(6). doi: 10.1093/sleep/zsaf042.

本文引用的文献

1
The memory function of sleep.
Nat Rev Neurosci. 2010 Feb;11(2):114-26. doi: 10.1038/nrn2762. Epub 2010 Jan 4.
2
The slow (<1 Hz) rhythm of non-REM sleep: a dialogue between three cardinal oscillators.
Nat Neurosci. 2010 Jan;13(1):9-17. doi: 10.1038/nn.2445. Epub 2009 Dec 6.
3
State-dependent spike-timing relationships between hippocampal and prefrontal circuits during sleep.
Neuron. 2009 Feb 26;61(4):587-96. doi: 10.1016/j.neuron.2009.01.011.
4
The influence of learning on sleep slow oscillations and associated spindles and ripples in humans and rats.
Eur J Neurosci. 2009 Mar;29(5):1071-81. doi: 10.1111/j.1460-9568.2009.06654.x. Epub 2009 Feb 24.
5
Changes in the density of stage 2 sleep spindles following motor learning in young and older adults.
J Sleep Res. 2008 Mar;17(1):23-33. doi: 10.1111/j.1365-2869.2008.00634.x.
6
Sleep transforms the cerebral trace of declarative memories.
Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18778-83. doi: 10.1073/pnas.0705454104. Epub 2007 Nov 13.
7
The contribution of sleep to hippocampus-dependent memory consolidation.
Trends Cogn Sci. 2007 Oct;11(10):442-50. doi: 10.1016/j.tics.2007.09.001. Epub 2007 Oct 1.
8
Hemodynamic cerebral correlates of sleep spindles during human non-rapid eye movement sleep.
Proc Natl Acad Sci U S A. 2007 Aug 7;104(32):13164-9. doi: 10.1073/pnas.0703084104. Epub 2007 Aug 1.
9
Are corticothalamic 'up' states fragments of wakefulness?
Trends Neurosci. 2007 Jul;30(7):334-42. doi: 10.1016/j.tins.2007.04.006. Epub 2007 May 3.
10
Daytime naps, motor memory consolidation and regionally specific sleep spindles.
PLoS One. 2007 Apr 4;2(4):e341. doi: 10.1371/journal.pone.0000341.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验