Department of Neuroendocrinology, University of Lübeck, Lübeck, Germany.
Sleep. 2011 Oct 1;34(10):1411-21. doi: 10.5665/SLEEP.1290.
Thalamo-cortical spindles driven by the up-state of neocortical slow (< 1 Hz) oscillations (SOs) represent a candidate mechanism of memory consolidation during sleep. We examined interactions between SOs and spindles in human slow wave sleep, focusing on the presumed existence of 2 kinds of spindles, i.e., slow frontocortical and fast centro-parietal spindles.
Two experiments were performed in healthy humans (24.5 ± 0.9 y) investigating undisturbed sleep (Experiment I) and the effects of prior learning (word paired associates) vs. non-learning (Experiment II) on multichannel EEG recordings during sleep.
Only fast spindles (12-15 Hz) were synchronized to the depolarizing SO up-state. Slow spindles (9-12 Hz) occurred preferentially at the transition into the SO down-state, i.e., during waning depolarization. Slow spindles also revealed a higher probability to follow rather than precede fast spindles. For sequences of individual SOs, fast spindle activity was largest for "initial" SOs, whereas SO amplitude and slow spindle activity were largest for succeeding SOs. Prior learning enhanced this pattern.
The finding that fast and slow spindles occur at different times of the SO cycle points to disparate generating mechanisms for the 2 kinds of spindles. The reported temporal relationships during SO sequences suggest that fast spindles, driven by the SO up-state feed back to enhance the likelihood of succeeding SOs together with slow spindles. By enforcing such SO-spindle cycles, particularly after prior learning, fast spindles possibly play a key role in sleep-dependent memory processing.
由新皮层慢波(<1 Hz)振荡的上状态驱动的丘脑皮质纺锤波代表了睡眠期间记忆巩固的候选机制。我们在人类慢波睡眠中研究了 SOs 和纺锤波之间的相互作用,重点关注两种假定的纺锤波,即慢额皮质和快中顶纺锤波。
在健康人类中进行了两项实验(24.5±0.9 岁),研究了未受干扰的睡眠(实验 I)以及先前学习(单词配对联想)与非学习(实验 II)对睡眠期间多通道 EEG 记录的影响。
只有快纺锤波(12-15 Hz)与去极化 SO 上状态同步。慢纺锤波(9-12 Hz)优先发生在 SO 下状态的转变期间,即在去极化减弱期间。慢纺锤波也显示出更高的跟随而不是先于快纺锤波的概率。对于单个 SO 的序列,快纺锤波活动在“初始”SO 中最大,而 SO 幅度和慢纺锤波活动在随后的 SO 中最大。先前的学习增强了这种模式。
发现快和慢纺锤波在 SO 周期的不同时间发生,这表明这两种纺锤波具有不同的产生机制。在 SO 序列期间报告的时间关系表明,由 SO 上状态驱动的快纺锤波反馈以增强随后的 SO 与慢纺锤波一起发生的可能性。通过强制这种 SO-纺锤波循环,特别是在先前学习之后,快纺锤波可能在睡眠依赖的记忆处理中发挥关键作用。