Howard Hughes Medical Institute and Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States.
Nano Lett. 2011 Nov 9;11(11):4912-8. doi: 10.1021/nl202847t. Epub 2011 Oct 11.
We present a supported membrane platform consisting of a fluid lipid bilayer membrane embedded with a fixed array of gold nanoparticles. The system is realized by preforming a hexagonal array of gold nanoparticles (∼5-7 nm) with controlled spacing (∼50-150 nm) fixed to a silica or glass substrate by block copolymer lithography. Subsequently, a supported membrane is assembled over the intervening bare substrate. Proteins or other ligands can be associated with the fluid lipid component, the fixed nanoparticle component, or both, providing a hybrid interface consisting of mobile and immobile components with controlled geometry. We test different biochemical coupling strategies to bind individual proteins to the particles surrounded by a fluid lipid membrane. The coupling efficiency to nanoparticles and the influence of nanoparticle arrays on the surrounding membrane integrity are characterized by fluorescence imaging, correlation spectroscopy, and super-resolution fluorescence microscopy. Finally, the functionality of this system for live cell experiments is tested using the ephrin-A1-EphA2 juxtacrine signaling interaction in human breast epithelial cells.
我们提出了一个由嵌入固定的金纳米粒子阵列的流体脂质双层膜组成的支撑膜平台。该系统通过使用嵌段共聚物光刻技术在二氧化硅或玻璃基底上预先形成具有受控间距(约 50-150nm)的约 5-7nm 的金纳米粒子(~)的六边形阵列来实现。随后,在裸露的基底之间组装支撑膜。蛋白质或其他配体可以与流体脂质成分、固定的纳米粒子成分或两者结合,提供具有受控几何形状的可移动和不可移动成分的混合界面。我们测试了不同的生化偶联策略,以将单个蛋白质与周围的流体脂质膜结合。通过荧光成像、相关光谱和超分辨率荧光显微镜来表征与纳米粒子的偶联效率以及纳米粒子阵列对周围膜完整性的影响。最后,通过人乳腺上皮细胞中 Ephrin-A1-EphA2 旁分泌信号相互作用测试了该系统用于活细胞实验的功能。