Manuguerra Maurizio, Heller Gillian Z
Macquarie University, Australia.
Int J Biostat. 2010;6(1):Article 14. doi: 10.2202/1557-4679.1230.
Ordinal regression analysis is a convenient tool for analyzing ordinal response variables in the presence of covariates. In this paper we extend this methodology to the case of continuous self-rating scales such as the Visual Analog Scale (VAS) used in pain assessment, or the Linear Analog Self-Assessment (LASA) scales in quality of life studies. These scales measure subjects' perception of an intangible quantity, and cannot be handled as ratio variables because of their inherent nonlinearity. We express the likelihood in terms of a function connecting the scale with an underlying continuous latent variable and approximate this function either parametrically or non-parametrically. Then a general semi-parametric regression framework for continuous scales is developed. Two data sets have been analyzed to compare our method to the standard discrete ordinal regression model, and the parametric to the non-parametric versions of the model. The first data set uses VAS data from a study on the efficacy of low-level laser therapy in the treatment of chronic neck pain; the second comes from a study on chemotherapy treatments in advanced breast cancer and looks at the impact of different drugs on patients' quality of life. The continuous formulation of the ordinal regression model has the advantage of no loss of precision due to categorization of the scores and no arbitrary choice of the number and boundaries of categories. The semi-parametric form of the model makes it a flexible method for analysis of continuous ordinal scales.
有序回归分析是一种在存在协变量的情况下分析有序响应变量的便捷工具。在本文中,我们将这种方法扩展到连续自评量表的情况,例如疼痛评估中使用的视觉模拟量表(VAS),或生活质量研究中的线性模拟自评(LASA)量表。这些量表测量受试者对无形数量的感知,由于其固有的非线性,不能作为比率变量来处理。我们用一个将量表与潜在连续潜变量联系起来的函数来表示似然,并通过参数化或非参数化的方式对这个函数进行近似。然后,我们开发了一个用于连续量表的一般半参数回归框架。我们分析了两个数据集,将我们的方法与标准离散有序回归模型进行比较,并将模型的参数化版本与非参数化版本进行比较。第一个数据集使用了一项关于低强度激光治疗慢性颈部疼痛疗效研究中的VAS数据;第二个数据集来自一项关于晚期乳腺癌化疗治疗的研究,考察了不同药物对患者生活质量的影响。有序回归模型的连续形式具有因分数分类而不会损失精度以及无需任意选择类别数量和边界的优点。该模型的半参数形式使其成为一种灵活的连续有序量表分析方法。