Department of Statistics, University of Washington, Seattle, WA, USA.
Alexion Pharmaceuticals, Inc., Boston, MA, USA.
Stat Methods Med Res. 2024 Sep;33(9):1517-1530. doi: 10.1177/09622802241262525. Epub 2024 Jul 25.
Individualized treatment rules inform tailored treatment decisions based on the patient's information, where the goal is to optimize clinical benefit for the population. When the clinical outcome of interest is survival time, most of current approaches typically aim to maximize the expected time of survival. We propose a new criterion for constructing Individualized treatment rules that optimize the clinical benefit with survival outcomes, termed as the adjusted probability of a longer survival. This objective captures the likelihood of living longer with being on treatment, compared to the alternative, which provides an alternative and often straightforward interpretation to communicate with clinicians and patients. We view it as an alternative to the survival analysis standard of the hazard ratio and the increasingly used restricted mean survival time. We develop a new method to construct the optimal Individualized treatment rule by maximizing a nonparametric estimator of the adjusted probability of a longer survival for a decision rule. Simulation studies demonstrate the reliability of the proposed method across a range of different scenarios. We further perform data analysis using data collected from a randomized Phase III clinical trial (SWOG S0819).
个体化治疗规则基于患者信息提供量身定制的治疗决策,其目标是优化人群的临床获益。当关注的临床结局是生存时间时,目前大多数方法通常旨在最大化预期的生存时间。我们提出了一种构建个体化治疗规则的新准则,该准则可优化生存结局的临床获益,称为调整后的更长生存概率。该目标捕获了接受治疗时比替代治疗更有可能延长生存的可能性,这为与临床医生和患者进行沟通提供了另一种选择,而且通常更加直接。我们将其视为生存分析标准风险比和越来越多使用的受限平均生存时间的替代方法。我们通过最大化决策规则的更长生存调整概率的非参数估计量,开发了一种构建最优个体化治疗规则的新方法。模拟研究在一系列不同场景下证明了所提出方法的可靠性。我们还使用从一项随机 III 期临床试验(SWOG S0819)中收集的数据进行了数据分析。