Rich Benjamin, Moodie Erica E M, Stephens David A, Platt Robert W
McGill University, Canada.
Int J Biostat. 2010;6(2):Article 12. doi: 10.2202/1557-4679.1210.
In this paper, we discuss model checking with residual diagnostic plots for g-estimation of optimal dynamic treatment regimes. The g-estimation method requires three different model specifications at each treatment interval under consideration: (1) the blip model; (2) the expected counterfactual model; and (3) the propensity model. Of these, the expected counterfactual model is especially difficult to specify correctly in practice and so far there has been little guidance as to how to check for model misspecification. Residual plots are a useful and standard tool for model diagnostics in the classical regression setting; we have adapted this approach for g-estimation. We demonstrate the usefulness of our approach in a simulation study, and apply it to real data in the context of estimating the optimal time to stop breastfeeding.
在本文中,我们讨论了使用残差诊断图进行模型检验,以对最优动态治疗方案进行g估计。g估计方法在每个考虑的治疗间隔需要三种不同的模型设定:(1)脉冲模型;(2)预期反事实模型;以及(3)倾向模型。其中,预期反事实模型在实际中特别难以正确设定,到目前为止,关于如何检查模型误设几乎没有指导。残差图是经典回归设定中用于模型诊断的一种有用且标准的工具;我们已将此方法改编用于g估计。我们在一项模拟研究中展示了我们方法的有用性,并将其应用于估计停止母乳喂养的最佳时间背景下的实际数据。