Lefebvre Geneviève, Delaney Joseph A, McClelland Robyn L
Department of Mathematics, Université du Québec à Montréal, Montréal, Canada.
Stat Med. 2014 Jul 20;33(16):2797-813. doi: 10.1002/sim.6123. Epub 2014 Mar 5.
We illustrate the application of the Bayesian Adjustment for Confounding (BAC) algorithm when the treatment covariate is binary. Using data from the Multi-Ethnic Study of Atherosclerosis, we estimate the effect of ever smoking on common carotid artery intimal medial thickness among adult Caucasian participants (n=1378). Our novel implementation of the BAC algorithm is performed first from an outcome model perspective and second from a treatment model perspective with both inverse probability weighting and doubly-robust estimation techniques. The BAC results are compared with the results obtained using standard model averaging and full model strategies, giving a range of adjusted estimates between 45.50 and 65.30 μm for increased common carotid artery intimal medial thickness among ever smokers. For both perspectives, we observe that BAC offers similar performance to using the fully specified outcome and/or treatment model (the full outcome model ever smoking effect is 48.61 μm; 95% CI: (0.62, 96.60)). We then redo the analyses for the African American, Hispanic, and Chinese adult participants to study the robustness of these findings with reduced sample size. For the Chinese subcohort, which corresponds to the smallest sample size (n=436), we find that, from a treatment model perspective, BAC reduces the variability of the estimates in comparison with using a full model approach. This suggests that the use of BAC in conjunction with inverse probability weighting and doubly-robust estimation can be advantageous when applied to relatively small sample sizes. This conjecture is subsequently verified on the basis of three simulated experiments.
我们阐述了在治疗协变量为二元变量时贝叶斯混杂调整(BAC)算法的应用。利用动脉粥样硬化多族裔研究的数据,我们估计了成年白人参与者(n = 1378)中曾经吸烟对颈总动脉内膜中层厚度的影响。我们对BAC算法的新颖实现首先从结果模型的角度进行,其次从治疗模型的角度进行,同时采用逆概率加权和双重稳健估计技术。将BAC的结果与使用标准模型平均和全模型策略获得的结果进行比较,曾经吸烟者颈总动脉内膜中层厚度增加的调整估计范围在45.50至65.30μm之间。对于这两个角度,我们观察到BAC与使用完全指定的结果和/或治疗模型具有相似的性能(完全结果模型中曾经吸烟的效应为48.61μm;95%置信区间:(0.62, 96.60))。然后,我们对非裔美国、西班牙裔和中国成年参与者重新进行分析,以研究在样本量减少的情况下这些发现的稳健性。对于样本量最小的中国亚组(n = 436),我们发现,从治疗模型的角度来看,与使用全模型方法相比,BAC降低了估计的变异性。这表明,当应用于相对较小的样本量时,将BAC与逆概率加权和双重稳健估计结合使用可能具有优势。这一推测随后在三个模拟实验的基础上得到了验证。