Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
Am J Epidemiol. 2024 Oct 7;193(10):1477-1481. doi: 10.1093/aje/kwae065.
Multiple imputation (MI) is commonly implemented to mitigate potential selection bias due to missing data. The accompanying article by Nguyen and Stuart (Am J Epidemiol. 2024;193(10):1470-1476) examines the statistical consistency of several ways of integrating MI with propensity scores. As Nguyen and Stuart noted, variance estimation for these different approaches remains to be developed. One common option is the nonparametric bootstrap, which can provide valid inference when closed-form variance estimators are not available. However, there is no consensus on how to implement MI and nonparametric bootstrapping in analyses. To complement Nguyen and Stuart's article on MI and propensity score analyses, we review some currently available approaches on variance estimation with MI and nonparametric bootstrapping.
多重插补(MI)常用于减轻由于数据缺失导致的潜在选择偏差。Nguyen 和 Stuart 的文章(Am J Epidemiol. 2024;193(10):1470-1476)探讨了将 MI 与倾向评分结合使用的几种方法在统计学上的一致性。正如 Nguyen 和 Stuart 所指出的,这些不同方法的方差估计仍有待开发。一种常见的选择是非参数自举法,当没有闭式方差估计时,它可以提供有效的推断。然而,在分析中如何实施 MI 和非参数自举法还没有共识。为了补充 Nguyen 和 Stuart 关于 MI 和倾向评分分析的文章,我们回顾了一些当前可用的方法,用于 MI 和非参数自举法的方差估计。