Suppr超能文献

盒式电极微生物燃料电池中的种群动态和当前代机制。

Population dynamics and current-generation mechanisms in cassette-electrode microbial fuel cells.

机构信息

Hashimoto Light Energy Conversion Project, ERATO/JST, Bunkyo-ku, Tokyo, Japan.

出版信息

Appl Microbiol Biotechnol. 2011 Dec;92(6):1307-14. doi: 10.1007/s00253-011-3598-3. Epub 2011 Oct 9.

Abstract

Cassette-electrode microbial fuel cells (CE-MFCs) have been demonstrated useful to treat biomass wastes and recover electric energy from them. In order to reveal electricity-generation mechanisms in CE-MFCs, the present study operated a bench-scale reactor (1 l in capacity; approximately 1,000 cm(2) in anode and cathode areas) for treating a high-strength model organic wastewater (comprised of starch, peptone, and fish extract). Approximately 1 month was needed for the bench reactor to attain a stable performance, after which volumetric maximum power densities persisted between 120 and 150 mW/l throughout the experiment (for over 2 months). Temporal increases in the external resistance were found to induce subsequent increases in power outputs. After electric output became stable, electrolyte and anode were sampled from the reactor for evaluating their current-generation abilities; it was estimated that most of current (over 80%) was generated by microbes in the electrolyte. Cyclic voltammetry of an electrolyte supernatant detected several electron shuttles with different standard redox potentials at high concentrations (equivalent to or more than 100 μM 5-hydroxy-1,4-naphthoquinone). Denaturing gradient gel electrophoresis and quantitative real-time PCR of 16S ribosomal RNA gene fragments showed that bacteria related to the genus Dysgonomonas occurred abundantly in association with the increases in power outputs. These results suggest that mediated electron transfer was the main mechanism for electricity generation in CE-MFC, where high-concentration electron shuttles and Dysgonomonas bacteria played important roles.

摘要

盒式电极微生物燃料电池(CE-MFC)已被证明可用于处理生物质废物并从中回收电能。为了揭示 CE-MFC 中的发电机制,本研究使用了一个台式反应器(容量为 1 升;阳极和阴极面积约为 1000 cm(2))来处理高强度模型有机废水(由淀粉、蛋白胨和鱼提取物组成)。台式反应器需要大约 1 个月的时间才能达到稳定的性能,此后,在整个实验过程中(超过 2 个月),体积最大功率密度持续保持在 120 至 150 mW/l 之间。发现增加外部电阻会引起随后的功率输出增加。在电输出稳定后,从反应器中取样电解质和阳极,以评估它们的电流产生能力;据估计,大部分电流(超过 80%)是由电解质中的微生物产生的。电解质上清液的循环伏安法在高浓度(相当于或超过 100 μM 5-羟基-1,4-萘醌)下检测到几种具有不同标准氧化还原电位的电子穿梭体。16S 核糖体 RNA 基因片段的变性梯度凝胶电泳和实时定量 PCR 显示,与功率输出增加相关的 Dysgonomonas 属细菌大量存在。这些结果表明,介导的电子转移是 CE-MFC 中发电的主要机制,其中高浓度电子穿梭体和 Dysgonomonas 细菌发挥了重要作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验