Toth Bryan A, Kostuk Mark, Meliza C Daniel, Margoliash Daniel, Abarbanel Henry D I
Department of Physics, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA 92093-0402, USA.
Biol Cybern. 2011 Oct;105(3-4):217-37. doi: 10.1007/s00422-011-0459-1. Epub 2011 Oct 11.
We present a method for using measurements of membrane voltage in individual neurons to estimate the parameters and states of the voltage-gated ion channels underlying the dynamics of the neuron's behavior. Short injections of a complex time-varying current provide sufficient data to determine the reversal potentials, maximal conductances, and kinetic parameters of a diverse range of channels, representing tens of unknown parameters and many gating variables in a model of the neuron's behavior. These estimates are used to predict the response of the model at times beyond the observation window. This method of [Formula: see text] extends to the general problem of determining model parameters and unobserved state variables from a sparse set of observations, and may be applicable to networks of neurons. We describe an exact formulation of the tasks in nonlinear data assimilation when one has noisy data, errors in the models, and incomplete information about the state of the system when observations commence. This is a high dimensional integral along the path of the model state through the observation window. In this article, a stationary path approximation to this integral, using a variational method, is described and tested employing data generated using neuronal models comprising several common channels with Hodgkin-Huxley dynamics. These numerical experiments reveal a number of practical considerations in designing stimulus currents and in determining model consistency. The tools explored here are computationally efficient and have paths to parallelization that should allow large individual neuron and network problems to be addressed.
我们提出了一种利用单个神经元膜电压测量值来估计神经元行为动力学背后电压门控离子通道参数和状态的方法。短时间注入复杂的时变电流可提供足够的数据,以确定多种通道的反转电位、最大电导和动力学参数,这些参数在神经元行为模型中代表了数十个未知参数和许多门控变量。这些估计值用于预测超出观察窗口时间的模型响应。这种[公式:见正文]方法扩展到了从稀疏观测集确定模型参数和未观测状态变量的一般问题,并且可能适用于神经元网络。当存在噪声数据、模型误差以及观测开始时系统状态的不完整信息时,我们描述了非线性数据同化任务的精确公式。这是沿着模型状态通过观测窗口的路径进行的高维积分。在本文中,使用变分方法描述并测试了对该积分的平稳路径近似,采用了由包含具有霍奇金 - 赫胥黎动力学的几种常见通道的神经元模型生成的数据。这些数值实验揭示了设计刺激电流和确定模型一致性时的一些实际考虑因素。这里探索的工具计算效率高,并且具有并行化途径,这应该能够解决大型单个神经元和网络问题。