Suppr超能文献

在 fMRI 数据分析中结合结构化假设和概率图形模型。

Incorporating structured assumptions with probabilistic graphical models in fMRI data analysis.

机构信息

International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Japan; Princeton Neuroscience Institute, Princeton University, United States.

Facebook Reality Labs, United States.

出版信息

Neuropsychologia. 2020 Jul;144:107500. doi: 10.1016/j.neuropsychologia.2020.107500. Epub 2020 May 17.

Abstract

With the wide adoption of functional magnetic resonance imaging (fMRI) by cognitive neuroscience researchers, large volumes of brain imaging data have been accumulated in recent years. Aggregating these data to derive scientific insights often faces the challenge that fMRI data are high-dimensional, heterogeneous across people, and noisy. These challenges demand the development of computational tools that are tailored both for the neuroscience questions and for the properties of the data. We review a few recently developed algorithms in various domains of fMRI research: fMRI in naturalistic tasks, analyzing full-brain functional connectivity, pattern classification, inferring representational similarity and modeling structured residuals. These algorithms all tackle the challenges in fMRI similarly: they start by making clear statements of assumptions about neural data and existing domain knowledge, incorporate those assumptions and domain knowledge into probabilistic graphical models, and use those models to estimate properties of interest or latent structures in the data. Such approaches can avoid erroneous findings, reduce the impact of noise, better utilize known properties of the data, and better aggregate data across groups of subjects. With these successful cases, we advocate wider adoption of explicit model construction in cognitive neuroscience. Although we focus on fMRI, the principle illustrated here is generally applicable to brain data of other modalities.

摘要

近年来,随着认知神经科学研究人员广泛采用功能磁共振成像(fMRI),大量的脑成像数据已经积累起来。将这些数据聚合起来以得出科学见解,往往面临着 fMRI 数据维度高、人与人之间存在异质性且噪声大的挑战。这些挑战需要开发既针对神经科学问题又针对数据特性的计算工具。我们回顾了在 fMRI 研究的各个领域中最近开发的一些算法:自然任务中的 fMRI、全脑功能连接分析、模式分类、推断表示相似性和建模结构残差。这些算法在处理 fMRI 中的挑战时都采取了类似的方法:首先,它们对神经数据和现有领域知识做出明确的假设陈述,将这些假设和领域知识纳入概率图模型中,并使用这些模型来估计数据中感兴趣的属性或潜在结构。这种方法可以避免错误的发现,减少噪声的影响,更好地利用数据的已知特性,并更好地在多个研究对象群体之间聚合数据。通过这些成功的案例,我们提倡在认知神经科学中更广泛地采用明确的模型构建。虽然我们重点介绍 fMRI,但这里说明的原理通常适用于其他模态的脑数据。

相似文献

9
Subspace approaches for FMRI time series estimation.用于功能磁共振成像时间序列估计的子空间方法。
Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:5485-8. doi: 10.1109/IEMBS.2007.4353587.
10
Modeling and inference of multisubject fMRI data.多主体功能磁共振成像数据的建模与推断
IEEE Eng Med Biol Mag. 2006 Mar-Apr;25(2):42-51. doi: 10.1109/memb.2006.1607668.

引用本文的文献

5
Enhanced hyperalignment via spatial prior information.基于空间先验信息的增强超对准。
Hum Brain Mapp. 2023 Mar;44(4):1725-1740. doi: 10.1002/hbm.26170. Epub 2022 Dec 21.
6
Joint Learning of Full-Structure Noise in Hierarchical Bayesian Regression Models.分层贝叶斯回归模型中全结构噪声的联合学习
IEEE Trans Med Imaging. 2024 Feb;43(2):610-624. doi: 10.1109/TMI.2022.3224085. Epub 2024 Feb 2.
7
BrainIAK: The Brain Imaging Analysis Kit.BrainIAK:脑成像分析工具包。
Apert Neuro. 2021;1(4). doi: 10.52294/31bb5b68-2184-411b-8c00-a1dacb61e1da. Epub 2022 Feb 16.

本文引用的文献

1
Stan: A Probabilistic Programming Language.斯坦:一种概率编程语言。
J Stat Softw. 2017;76. doi: 10.18637/jss.v076.i01. Epub 2017 Jan 11.
2
Linking Structure and Function in Macroscale Brain Networks.连接宏观脑网络中的结构与功能
Trends Cogn Sci. 2020 Apr;24(4):302-315. doi: 10.1016/j.tics.2020.01.008. Epub 2020 Feb 24.
5
Variational representational similarity analysis.变分表示相似性分析。
Neuroimage. 2019 Nov 1;201:115986. doi: 10.1016/j.neuroimage.2019.06.064. Epub 2019 Jun 28.
8
fMRIPrep: a robust preprocessing pipeline for functional MRI.fMRIPrep:用于功能磁共振成像的强大预处理流水线。
Nat Methods. 2019 Jan;16(1):111-116. doi: 10.1038/s41592-018-0235-4. Epub 2018 Dec 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验