International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Japan; Princeton Neuroscience Institute, Princeton University, United States.
Facebook Reality Labs, United States.
Neuropsychologia. 2020 Jul;144:107500. doi: 10.1016/j.neuropsychologia.2020.107500. Epub 2020 May 17.
With the wide adoption of functional magnetic resonance imaging (fMRI) by cognitive neuroscience researchers, large volumes of brain imaging data have been accumulated in recent years. Aggregating these data to derive scientific insights often faces the challenge that fMRI data are high-dimensional, heterogeneous across people, and noisy. These challenges demand the development of computational tools that are tailored both for the neuroscience questions and for the properties of the data. We review a few recently developed algorithms in various domains of fMRI research: fMRI in naturalistic tasks, analyzing full-brain functional connectivity, pattern classification, inferring representational similarity and modeling structured residuals. These algorithms all tackle the challenges in fMRI similarly: they start by making clear statements of assumptions about neural data and existing domain knowledge, incorporate those assumptions and domain knowledge into probabilistic graphical models, and use those models to estimate properties of interest or latent structures in the data. Such approaches can avoid erroneous findings, reduce the impact of noise, better utilize known properties of the data, and better aggregate data across groups of subjects. With these successful cases, we advocate wider adoption of explicit model construction in cognitive neuroscience. Although we focus on fMRI, the principle illustrated here is generally applicable to brain data of other modalities.
近年来,随着认知神经科学研究人员广泛采用功能磁共振成像(fMRI),大量的脑成像数据已经积累起来。将这些数据聚合起来以得出科学见解,往往面临着 fMRI 数据维度高、人与人之间存在异质性且噪声大的挑战。这些挑战需要开发既针对神经科学问题又针对数据特性的计算工具。我们回顾了在 fMRI 研究的各个领域中最近开发的一些算法:自然任务中的 fMRI、全脑功能连接分析、模式分类、推断表示相似性和建模结构残差。这些算法在处理 fMRI 中的挑战时都采取了类似的方法:首先,它们对神经数据和现有领域知识做出明确的假设陈述,将这些假设和领域知识纳入概率图模型中,并使用这些模型来估计数据中感兴趣的属性或潜在结构。这种方法可以避免错误的发现,减少噪声的影响,更好地利用数据的已知特性,并更好地在多个研究对象群体之间聚合数据。通过这些成功的案例,我们提倡在认知神经科学中更广泛地采用明确的模型构建。虽然我们重点介绍 fMRI,但这里说明的原理通常适用于其他模态的脑数据。