Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA.
ISME J. 2012 Apr;6(4):814-26. doi: 10.1038/ismej.2011.136. Epub 2011 Oct 13.
We developed a broad-ranging method for identifying key hydrogen-producing and consuming microorganisms through analysis of hydrogenase gene content and expression in complex anaerobic microbial communities. The method is based on a tiling hydrogenase gene oligonucleotide DNA microarray (Hydrogenase Chip), which implements a high number of probes per gene by tiling probe sequences across genes of interest at 1.67 × -2 × coverage. This design favors the avoidance of false positive gene identification in samples of DNA or RNA extracted from complex microbial communities. We applied this technique to interrogate interspecies hydrogen transfer in complex communities in (i) lab-scale reductive dehalogenating microcosms enabling us to delineate key H(2)-consuming microorganisms, and (ii) hydrogen-generating microbial mats where we found evidence for significant H(2) production by cyanobacteria. Independent quantitative PCR analysis on selected hydrogenase genes showed that this Hydrogenase Chip technique is semiquantitative. We also determined that as microbial community complexity increases, specificity must be traded for sensitivity in analyzing data from tiling DNA microarrays.
我们开发了一种广泛的方法,通过分析复杂厌氧微生物群落中的氢化酶基因含量和表达来识别关键的产氢和耗氢微生物。该方法基于一种铺设氢化酶基因寡核苷酸 DNA 微阵列(氢化酶芯片),通过在感兴趣的基因上以 1.67×-2×覆盖率铺设探针序列来实现每个基因的大量探针。这种设计有利于避免从复杂微生物群落中提取的 DNA 或 RNA 样本中假阳性基因的识别。我们将该技术应用于(i)实验室规模的还原脱卤微宇宙中复杂群落中的种间氢转移研究,使我们能够描绘关键的 H(2)消耗微生物,以及(ii)产氢微生物垫,在那里我们发现了蓝细菌产生大量 H(2)的证据。对选定的氢化酶基因进行独立的定量 PCR 分析表明,这种氢化酶芯片技术是半定量的。我们还确定,随着微生物群落复杂性的增加,在分析铺设 DNA 微阵列数据时,必须在特异性和灵敏度之间进行权衡。