Suppr超能文献

以甲酸盐为底物的互营生长:缺氧环境中的一个新微生物生态位。

Syntrophic growth on formate: a new microbial niche in anoxic environments.

作者信息

Dolfing Jan, Jiang Bo, Henstra Anne M, Stams Alfons J M, Plugge Caroline M

机构信息

Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands.

出版信息

Appl Environ Microbiol. 2008 Oct;74(19):6126-31. doi: 10.1128/AEM.01428-08. Epub 2008 Aug 15.

Abstract

Anaerobic syntrophic associations of fermentative bacteria and methanogenic archaea operate at the thermodynamic limits of life. The interspecies transfer of electrons from formate or hydrogen as a substrate for the methanogens is key. Contrary requirements of syntrophs and methanogens for growth-sustaining product and substrate concentrations keep the formate and hydrogen concentrations low and within a narrow range. Since formate is a direct substrate for methanogens, a niche for microorganisms that grow by the conversion of formate to hydrogen plus bicarbonate--or vice versa--may seem unlikely. Here we report experimental evidence for growth on formate by syntrophic communities of (i) Moorella sp. strain AMP in coculture with a thermophilic hydrogen-consuming Methanothermobacter species and of (ii) Desulfovibrio sp. strain G11 in coculture with a mesophilic hydrogen consumer, Methanobrevibacter arboriphilus AZ. In pure culture, neither Moorella sp. strain AMP, nor Desulfovibrio sp. strain G11, nor the methanogens grow on formate alone. These results imply the existence of a previously unrecognized microbial niche in anoxic environments.

摘要

发酵细菌与产甲烷古菌的厌氧互营共生关系在生命的热力学极限条件下发挥作用。电子以甲酸盐或氢气作为产甲烷菌的底物进行种间转移是关键。互营菌和产甲烷菌对维持生长的产物及底物浓度的相反需求,使得甲酸盐和氢气的浓度保持在较低水平且范围狭窄。由于甲酸盐是产甲烷菌的直接底物,因此通过将甲酸盐转化为氢气和碳酸氢盐(或反之亦然)来生长的微生物似乎不太可能有生存空间。在此,我们报告了以下实验证据:(i)嗜热耗氢甲烷嗜热杆菌与嗜热栖热放线菌属菌株AMP的共培养物,以及(ii)嗜温氢气消费者嗜树栖甲烷短杆菌AZ与脱硫弧菌属菌株G11的共培养物,均可利用甲酸盐生长。在纯培养中,嗜热栖热放线菌属菌株AMP、脱硫弧菌属菌株G11以及产甲烷菌单独在甲酸盐上均无法生长。这些结果表明在缺氧环境中存在一个此前未被认识的微生物生态位。

相似文献

1
Syntrophic growth on formate: a new microbial niche in anoxic environments.
Appl Environ Microbiol. 2008 Oct;74(19):6126-31. doi: 10.1128/AEM.01428-08. Epub 2008 Aug 15.
2
Formate-driven growth coupled with H(2) production.
Nature. 2010 Sep 16;467(7313):352-5. doi: 10.1038/nature09375.
3
Impact of the hydrogen partial pressure on lactate degradation in a coculture of Desulfovibrio sp. G11 and Methanobrevibacter arboriphilus DH1.
Appl Microbiol Biotechnol. 2015 Apr;99(8):3599-608. doi: 10.1007/s00253-014-6241-2. Epub 2014 Dec 4.
4
Limitation of syntrophic coculture growth by the acetogen.
Biotechnol Bioeng. 2016 Mar;113(3):560-7. doi: 10.1002/bit.25816. Epub 2015 Sep 10.
5
Cysteine-Accelerated Methanogenic Propionate Degradation in Paddy Soil Enrichment.
Microb Ecol. 2017 May;73(4):916-924. doi: 10.1007/s00248-016-0882-x. Epub 2016 Nov 5.
6
Interspecies Formate Exchange Drives Syntrophic Growth of and Methanococcus maripaludis.
Appl Environ Microbiol. 2022 Dec 13;88(23):e0115922. doi: 10.1128/aem.01159-22. Epub 2022 Nov 14.
7
Syntrophic entanglements for propionate and acetate oxidation under thermophilic and high-ammonia conditions.
ISME J. 2023 Nov;17(11):1966-1978. doi: 10.1038/s41396-023-01504-y. Epub 2023 Sep 7.
8
Electron transfer in syntrophic communities of anaerobic bacteria and archaea.
Nat Rev Microbiol. 2009 Aug;7(8):568-77. doi: 10.1038/nrmicro2166.
9
Variation among Desulfovibrio species in electron transfer systems used for syntrophic growth.
J Bacteriol. 2013 Mar;195(5):990-1004. doi: 10.1128/JB.01959-12. Epub 2012 Dec 21.
10
Metabolic interactions between anaerobic bacteria in methanogenic environments.
Antonie Van Leeuwenhoek. 1994;66(1-3):271-94. doi: 10.1007/BF00871644.

引用本文的文献

1
Exploring the mechanisms of supplemented CO in enhancing methane production in anaerobic digestion process, a review.
Bioengineered. 2025 Dec;16(1):2531667. doi: 10.1080/21655979.2025.2531667. Epub 2025 Jul 22.
2
Methanol and Carbon Monoxide Metabolism of the Thermophile Moorella caeni.
Environ Microbiol. 2025 Apr;27(4):e70096. doi: 10.1111/1462-2920.70096.
3
Methanol transfer supports metabolic syntrophy between bacteria and archaea.
Nature. 2025 Mar;639(8053):190-195. doi: 10.1038/s41586-024-08491-w. Epub 2025 Jan 29.
5
Metabolism of novel potential syntrophic acetate-oxidizing bacteria in thermophilic methanogenic chemostats.
Appl Environ Microbiol. 2024 Feb 21;90(2):e0109023. doi: 10.1128/aem.01090-23. Epub 2024 Jan 23.
6
Serpentinization as the source of energy, electrons, organics, catalysts, nutrients and pH gradients for the origin of LUCA and life.
Front Microbiol. 2023 Oct 2;14:1257597. doi: 10.3389/fmicb.2023.1257597. eCollection 2023.
8
Survival Strategies and Metabolic Interactions between Ruminococcus gauvreauii and , Isolated from Human Bile.
Microbiol Spectr. 2022 Aug 31;10(4):e0277621. doi: 10.1128/spectrum.02776-21. Epub 2022 Jul 11.
9
The Role of Exopolysaccharides in Direct Interspecies Electron Transfer.
Front Microbiol. 2022 Jun 16;13:927246. doi: 10.3389/fmicb.2022.927246. eCollection 2022.
10
Overview of Diverse Methyl/Alkyl-Coenzyme M Reductases and Considerations for Their Potential Heterologous Expression.
Front Microbiol. 2022 Apr 25;13:867342. doi: 10.3389/fmicb.2022.867342. eCollection 2022.

本文引用的文献

1
The complete genome sequence of Moorella thermoacetica (f. Clostridium thermoaceticum).
Environ Microbiol. 2008 Oct;10(10):2550-73. doi: 10.1111/j.1462-2920.2008.01679.x. Epub 2008 Jun 9.
2
Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea.
Ann N Y Acad Sci. 2008 Mar;1125:171-89. doi: 10.1196/annals.1419.019.
3
Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs.
Nature. 2008 Jan 10;451(7175):176-80. doi: 10.1038/nature06484. Epub 2007 Dec 12.
4
A "follow the energy" approach for astrobiology.
Astrobiology. 2007 Dec;7(6):819-23. doi: 10.1089/ast.2007.0207.
5
The integrated microbial genomes (IMG) system in 2007: data content and analysis tool extensions.
Nucleic Acids Res. 2008 Jan;36(Database issue):D528-33. doi: 10.1093/nar/gkm846. Epub 2007 Oct 12.
6
Hydrogen metabolism in Shewanella oneidensis MR-1.
Appl Environ Microbiol. 2007 Feb;73(4):1153-65. doi: 10.1128/AEM.01588-06. Epub 2006 Dec 22.
9
Methane Production from Formate by Syntrophic Association of Methanobacterium bryantii and Desulfovibrio vulgaris JJ.
Appl Environ Microbiol. 1986 Dec;52(6):1436-7. doi: 10.1128/aem.52.6.1436-1437.1986.
10
Growth of methanogenic bacteria in pure culture with 2-propanol and other alcohols as hydrogen donors.
Appl Environ Microbiol. 1986 May;51(5):1056-62. doi: 10.1128/aem.51.5.1056-1062.1986.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验