Suppr超能文献

稀疏多壳扩散成像

Sparse multi-shell diffusion imaging.

作者信息

Rathi Yogesh, Michailovich O, Setsompop K, Bouix S, Shenton M E, Westin C F

机构信息

Brigham and Women's Hospital, Harvard Medical School, Boston, USA.

出版信息

Med Image Comput Comput Assist Interv. 2011;14(Pt 2):58-65. doi: 10.1007/978-3-642-23629-7_8.

Abstract

Diffusion magnetic resonance imaging (dMRI) is an important tool that allows non-invasive investigation of neural architecture of the brain. The data obtained from these in-vivo scans provides important information about the integrity and connectivity of neural fiber bundles in the brain. A multi-shell imaging (MSI) scan can be of great value in the study of several psychiatric and neurological disorders, yet its usability has been limited due to the long acquisition times required. A typical MSI scan involves acquiring a large number of gradient directions for the 2 (or more) spherical shells (several b-values), making the acquisition time significantly long for clinical application. In this work, we propose to use results from the theory of compressive sampling and determine the minimum number of gradient directions required to attain signal reconstruction similar to a traditional MSI scan. In particular, we propose a generalization of the single shell spherical ridgelets basis for sparse representation of multi shell signals. We demonstrate its efficacy on several synthetic and in-vivo data sets and perform quantitative comparisons with solid spherical harmonics based representation. Our preliminary results show that around 20-24 directions per shell are enough for robustly recovering the diffusion propagator.

摘要

扩散磁共振成像(dMRI)是一种重要工具,可用于对大脑神经结构进行无创性研究。从这些活体扫描中获得的数据提供了有关大脑中神经纤维束的完整性和连通性的重要信息。多壳成像(MSI)扫描在多种精神疾病和神经疾病的研究中可能具有重要价值,然而,由于所需的采集时间较长,其可用性受到了限制。典型的MSI扫描需要为2个(或更多)球形壳(几个b值)采集大量的梯度方向,这使得临床应用中的采集时间显著延长。在这项工作中,我们建议利用压缩采样理论的结果,确定实现与传统MSI扫描类似的信号重建所需的最小梯度方向数。特别是,我们提出了一种单壳球脊波基的推广,用于多壳信号的稀疏表示。我们在几个合成数据集和活体数据集上证明了其有效性,并与基于实心球谐函数的表示进行了定量比较。我们的初步结果表明,每个壳大约20-24个方向足以稳健地恢复扩散传播子。

相似文献

1
Sparse multi-shell diffusion imaging.
Med Image Comput Comput Assist Interv. 2011;14(Pt 2):58-65. doi: 10.1007/978-3-642-23629-7_8.
2
Multi-shell diffusion signal recovery from sparse measurements.
Med Image Anal. 2014 Oct;18(7):1143-56. doi: 10.1016/j.media.2014.06.003. Epub 2014 Jul 5.
3
Single-shell to multi-shell dMRI transformation using spatial and volumetric multilevel hierarchical reconstruction framework.
Magn Reson Imaging. 2022 Apr;87:133-156. doi: 10.1016/j.mri.2021.12.011. Epub 2022 Jan 10.
4
Cross-scanner and cross-protocol multi-shell diffusion MRI data harmonization: Algorithms and results.
Neuroimage. 2020 Nov 1;221:117128. doi: 10.1016/j.neuroimage.2020.117128. Epub 2020 Jul 13.
5
Generalized Richardson-Lucy (GRL) for analyzing multi-shell diffusion MRI data.
Neuroimage. 2020 Sep;218:116948. doi: 10.1016/j.neuroimage.2020.116948. Epub 2020 May 16.
6
Undersampled single-shell to MSMT fODF reconstruction using CNN-based ODE solver.
Comput Methods Programs Biomed. 2023 Mar;230:107339. doi: 10.1016/j.cmpb.2023.107339. Epub 2023 Jan 6.
9
Impact of radial and angular sampling on multiple shells acquisition in diffusion MRI.
Med Image Comput Comput Assist Interv. 2011;14(Pt 2):116-23. doi: 10.1007/978-3-642-23629-7_15.
10
Angular resolution enhancement technique for diffusion-weighted imaging (DWI) using predicted diffusion gradient directions.
Neuroimage. 2018 Dec;183:836-846. doi: 10.1016/j.neuroimage.2018.08.072. Epub 2018 Sep 5.

引用本文的文献

1
Mapping mesoscale connectivity within the human hippocampus.
Neuroimage. 2023 Nov 15;282:120406. doi: 10.1016/j.neuroimage.2023.120406. Epub 2023 Oct 11.
2
A review and experimental evaluation of deep learning methods for MRI reconstruction.
J Mach Learn Biomed Imaging. 2022 Mar;1. Epub 2022 Mar 11.
4
Papez's Forgotten Tract: 80 Years of Unreconciled Findings Concerning the Thalamocingulate Tract.
Front Neuroanat. 2019 Feb 18;13:14. doi: 10.3389/fnana.2019.00014. eCollection 2019.
5
Estimating fiber orientation distribution from diffusion MRI with spherical needlets.
Med Image Anal. 2018 May;46:57-72. doi: 10.1016/j.media.2018.01.003. Epub 2018 Feb 8.
6
Suprathreshold fiber cluster statistics: Leveraging white matter geometry to enhance tractography statistical analysis.
Neuroimage. 2018 May 1;171:341-354. doi: 10.1016/j.neuroimage.2018.01.006. Epub 2018 Jan 11.
7
A Sparse Bayesian Learning Algorithm for White Matter Parameter Estimation from Compressed Multi-shell Diffusion MRI.
Med Image Comput Comput Assist Interv. 2017 Sep;10433:602-610. doi: 10.1007/978-3-319-66182-7_69. Epub 2017 Sep 4.
8
Probabilistic tractography-based thalamic parcellation in healthy newborns and newborns with congenital heart disease.
J Magn Reson Imaging. 2018 Jun;47(6):1626-1637. doi: 10.1002/jmri.25875. Epub 2017 Oct 28.
9
Estimation of white matter fiber parameters from compressed multiresolution diffusion MRI using sparse Bayesian learning.
Neuroimage. 2018 Feb 15;167:488-503. doi: 10.1016/j.neuroimage.2017.06.052. Epub 2017 Jun 29.
10
Image formation in diffusion MRI: A review of recent technical developments.
J Magn Reson Imaging. 2017 Sep;46(3):646-662. doi: 10.1002/jmri.25664. Epub 2017 Feb 14.

本文引用的文献

1
Fast and accurate reconstruction of HARDI data using compressed sensing.
Med Image Comput Comput Assist Interv. 2010;13(Pt 1):607-14. doi: 10.1007/978-3-642-15705-9_74.
2
Multiple q-shell diffusion propagator imaging.
Med Image Anal. 2011 Aug;15(4):603-21. doi: 10.1016/j.media.2010.07.001. Epub 2010 Jul 14.
3
FAST DISPLACEMENT PROBABILITY PROFILE APPROXIMATION FROM HARDI USING 4TH-ORDER TENSORS.
Proc IEEE Int Symp Biomed Imaging. 2008 May 14;5:911-914. doi: 10.1109/ISBI.2008.4541145.
4
On approximation of orientation distributions by means of spherical ridgelets.
IEEE Trans Image Process. 2010 Feb;19(2):461-77. doi: 10.1109/TIP.2009.2035886. Epub 2009 Nov 3.
5
Efficient computation of PDF-based characteristics from diffusion MR signal.
Med Image Comput Comput Assist Interv. 2008;11(Pt 2):70-8. doi: 10.1007/978-3-540-85990-1_9.
6
Hybrid diffusion imaging.
Neuroimage. 2007 Jul 1;36(3):617-29. doi: 10.1016/j.neuroimage.2007.02.050. Epub 2007 Mar 24.
7
Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging.
Magn Reson Med. 2005 Dec;54(6):1377-86. doi: 10.1002/mrm.20642.
9
Diffusion MRI of complex neural architecture.
Neuron. 2003 Dec 4;40(5):885-95. doi: 10.1016/s0896-6273(03)00758-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验