Suppr超能文献

评估autoSCAN-W/A自动化微生物系统用于鉴定非发酵革兰氏阴性杆菌的性能。

Evaluation of autoSCAN-W/A automated microbiology system for the identification of non-glucose-fermenting gram-negative bacilli.

作者信息

Tenover F C, Mizuki T S, Carlson L G

机构信息

Veterans Affairs Medical Center, Seattle, Washington 98108.

出版信息

J Clin Microbiol. 1990 Jul;28(7):1628-34. doi: 10.1128/jcm.28.7.1628-1634.1990.

Abstract

We evaluated the ability of the autoSCAN-W/A (MicroScan Division, Baxter Healthcare Corporation, West Sacramento, Calif.), in conjunction with the dried colorimetric Neg ID type 2 panel (DCP) and new rapid fluorometric Neg ID panel (RFP), to identify non-glucose-fermenting gram-negative bacilli by challenging the system with 310 previously identified reference strains. Of these 310 isolates, 286 organisms were in the DCP data base and 269 were in the RFP data base. Use of the DCP panels resulted in 118 (41.3%) correct and 64 (22.4%) incorrect first choice identifications at greater than or equal to 85% probability, 61 (21.3%) low-probability identifications, and 43 (15.0%) reports of unidentified organisms. The RFP system reported 135 (50.1%) correct and 25 (9.3%) incorrect identifications at greater than or equal to 85% probability and 109 (40.5%) low-probability identifications. Unidentified isolates (DCP system only) and isolates producing low-probability first choice identifications (both systems) required supplementary biochemical testing. Over half (37 of 64 [57.8%]) of the DCP misidentifications were due to four commonly isolated, saccharolytic organisms (Alcaligenes xylosoxidans subsp. xylosoxidans, Pseudomonas putida, Pseudomonas fluorescens, and Xanthomonas maltophilia), while 7 of 25 (28%) of misidentifications in the RFP system were due to P. fluorescens. Of note, the RFP system identified non-glucose-fermenting gram-negative bacilli within 2 h of panel inoculation, allowing additional conventional biochemical tests to be set up the same day on low-probability isolates, whereas only 13.5% of the DCPs could be read at 18 h, with the remainder requiring 42 h of incubation before reading. When organism identifications were recalculated with the updated RFP data base and revised software, only 8.1% of all 310 isolates were misidentified at greater than or equal to 85% probability while 77.1% of the isolates were now correctly reported at this same high probability.

摘要

我们评估了autoSCAN-W/A(百特医疗公司微生物扫描部,加利福尼亚州西萨克拉门托)与干燥比色法阴性鉴定2型板(DCP)和新型快速荧光法阴性鉴定板(RFP)联合使用时,通过用310株先前鉴定的参考菌株对该系统进行挑战来鉴定非葡萄糖发酵革兰氏阴性杆菌的能力。在这310株分离株中,286种微生物在DCP数据库中,269种在RFP数据库中。使用DCP板时,在概率大于或等于85%的情况下,有118次(41.3%)首次选择鉴定正确,64次(22.4%)错误,61次(21.3%)为低概率鉴定,43次(15.0%)报告为无法鉴定的微生物。RFP系统在概率大于或等于85%的情况下报告了135次(50.1%)正确鉴定和25次(9.3%)错误鉴定,以及109次(40.5%)低概率鉴定。无法鉴定的分离株(仅DCP系统)和产生低概率首次选择鉴定的分离株(两个系统)都需要进行补充生化试验。DCP错误鉴定中超过一半(64例中的37例[57.8%])是由于四种常见的、能分解糖类的微生物(木糖氧化产碱杆菌木糖氧化亚种、恶臭假单胞菌、荧光假单胞菌和嗜麦芽窄食单胞菌),而RFP系统中25例错误鉴定中的7例(28%)是由于荧光假单胞菌。值得注意的是,RFP系统在接种平板后2小时内就能鉴定出非葡萄糖发酵革兰氏阴性杆菌,从而可以在同一天对低概率分离株进行额外的传统生化试验,而DCP在18小时时只有13.5%可以读取,其余的需要培养42小时才能读取。当使用更新后的RFP数据库和修订后的软件重新计算微生物鉴定结果时,在概率大于或等于85%的情况下,310株分离株中只有8.1%被错误鉴定,而现在有77.1%的分离株在同样高的概率下被正确报告。

相似文献

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验