Suppr超能文献

Genes2WordCloud:一种从基因列表和自由文本中识别生物学主题的快速方法。

Genes2WordCloud: a quick way to identify biological themes from gene lists and free text.

作者信息

Baroukh Caroline, Jenkins Sherry L, Dannenfelser Ruth, Ma'ayan Avi

机构信息

Department of Pharmacology and Systems Therapeutics, Systems Biology Center New York (SBCNY), Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY, 10029, USA.

出版信息

Source Code Biol Med. 2011 Oct 13;6:15. doi: 10.1186/1751-0473-6-15.

Abstract

BACKGROUND

Word-clouds recently emerged on the web as a solution for quickly summarizing text by maximizing the display of most relevant terms about a specific topic in the minimum amount of space. As biologists are faced with the daunting amount of new research data commonly presented in textual formats, word-clouds can be used to summarize and represent biological and/or biomedical content for various applications.

RESULTS

Genes2WordCloud is a web application that enables users to quickly identify biological themes from gene lists and research relevant text by constructing and displaying word-clouds. It provides users with several different options and ideas for the sources that can be used to generate a word-cloud. Different options for rendering and coloring the word-clouds give users the flexibility to quickly generate customized word-clouds of their choice.

METHODS

Genes2WordCloud is a word-cloud generator and a word-cloud viewer that is based on WordCram implemented using Java, Processing, AJAX, mySQL, and PHP. Text is fetched from several sources and then processed to extract the most relevant terms with their computed weights based on word frequencies. Genes2WordCloud is freely available for use online; it is open source software and is available for installation on any web-site along with supporting documentation at http://www.maayanlab.net/G2W.

CONCLUSIONS

Genes2WordCloud provides a useful way to summarize and visualize large amounts of textual biological data or to find biological themes from several different sources. The open source availability of the software enables users to implement customized word-clouds on their own web-sites and desktop applications.

摘要

背景

词云最近在网络上出现,作为一种通过在最小空间内最大化显示与特定主题最相关的术语来快速总结文本的解决方案。由于生物学家面临着通常以文本格式呈现的大量新研究数据,词云可用于总结和呈现生物和/或生物医学内容以用于各种应用。

结果

Genes2WordCloud是一个网络应用程序,它通过构建和显示词云,使用户能够从基因列表和相关研究文本中快速识别生物学主题。它为用户提供了几种不同的选项和用于生成词云的来源的想法。词云渲染和着色的不同选项为用户提供了灵活性,使其能够快速生成自己选择的定制词云。

方法

Genes2WordCloud是一个基于WordCram的词云生成器和词云查看器,使用Java、Processing、AJAX、MySQL和PHP实现。文本从多个来源获取,然后进行处理,以根据词频提取最相关的术语及其计算权重。Genes2WordCloud可免费在线使用;它是开源软件,可在任何网站上安装,并可在http://www.maayanlab.net/G2W获取支持文档。

结论

Genes2WordCloud提供了一种有用的方法来总结和可视化大量的文本生物学数据,或从几个不同来源找到生物学主题。该软件的开源可用性使用户能够在自己的网站和桌面应用程序上实现定制词云。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ba2/3213042/1d8d8f68f145/1751-0473-6-15-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验