Suppr超能文献

为计算机辅助诊断(CAD)系统学习CT树芽征的形态和纹理特征。

Learning shape and texture characteristics of CT tree-in-bud opacities for CAD systems.

作者信息

Bagci Ulas, Yao Jianhua, Caban Jesus, Suffredini Anthony F, Palmore Tara N, Mollura Daniel J

机构信息

Department of Radiology and Imaging Sciences, National Institutes of Health (NIH), Bethesda, MD, USA.

出版信息

Med Image Comput Comput Assist Interv. 2011;14(Pt 3):215-22. doi: 10.1007/978-3-642-23626-6_27.

Abstract

Although radiologists can employ CAD systems to characterize malignancies, pulmonary fibrosis and other chronic diseases; the design of imaging techniques to quantify infectious diseases continue to lag behind. There exists a need to create more CAD systems capable of detecting and quantifying characteristic patterns often seen in respiratory tract infections such as influenza, bacterial pneumonia, or tuborculosis. One of such patterns is Tree-in-bud (TIB) which presents thickened bronchial structures surrounding by clusters of micro-nodules. Automatic detection of TIB patterns is a challenging task because of their weak boundary, noisy appearance, and small lesion size. In this paper, we present two novel methods for automatically detecting TIB patterns: (1) a fast localization of candidate patterns using information from local scale of the images, and (2) a Möbius invariant feature extraction method based on learned local shape and texture properties. A comparative evaluation of the proposed methods is presented with a dataset of 39 laboratory confirmed viral bronchiolitis human parainfluenza (HPIV) CTs and 21 normal lung CTs. Experimental results demonstrate that the proposed CAD system can achieve high detection rate with an overall accuracy of 90.96%.

摘要

尽管放射科医生可以使用计算机辅助检测(CAD)系统来鉴别恶性肿瘤、肺纤维化和其他慢性疾病;但用于量化传染病的成像技术设计仍滞后。需要创建更多能够检测和量化呼吸道感染(如流感、细菌性肺炎或肺结核)中常见特征性模式的CAD系统。其中一种模式是芽生树(TIB),其表现为被微小结节簇包围的增厚支气管结构。由于TIB模式边界模糊、外观有噪声且病变尺寸小,自动检测TIB模式是一项具有挑战性的任务。在本文中,我们提出了两种自动检测TIB模式的新方法:(1)利用图像局部尺度信息快速定位候选模式,以及(2)基于学习到的局部形状和纹理属性的莫比乌斯不变特征提取方法。使用包含39例经实验室确诊的人类副流感病毒(HPIV)病毒性细支气管炎CT图像和21例正常肺CT图像的数据集,对所提出的方法进行了对比评估。实验结果表明,所提出的CAD系统能够实现高检测率,总体准确率为90.96%。

相似文献

4
AUTOMATIC QUANTIFICATION OF TREE-IN-BUD PATTERNS FROM CT SCANS.CT扫描中树芽征模式的自动量化
Proc IEEE Int Symp Biomed Imaging. 2012 Dec 31;2012:1459-1462. doi: 10.1109/ISBI.2012.6235846.
8
Unsupervised class labeling of diffuse lung diseases using frequent attribute patterns.使用频繁属性模式对弥漫性肺病进行无监督分类标记。
Int J Comput Assist Radiol Surg. 2017 Mar;12(3):519-528. doi: 10.1007/s11548-016-1476-2. Epub 2016 Aug 30.

引用本文的文献

4
AUTOMATIC QUANTIFICATION OF TREE-IN-BUD PATTERNS FROM CT SCANS.CT扫描中树芽征模式的自动量化
Proc IEEE Int Symp Biomed Imaging. 2012 Dec 31;2012:1459-1462. doi: 10.1109/ISBI.2012.6235846.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验