Bagci Ulas, Yao Jianhua, Caban Jesus, Suffredini Anthony F, Palmore Tara N, Mollura Daniel J
Department of Radiology and Imaging Sciences, National Institutes of Health (NIH), Bethesda, MD, USA.
Med Image Comput Comput Assist Interv. 2011;14(Pt 3):215-22. doi: 10.1007/978-3-642-23626-6_27.
Although radiologists can employ CAD systems to characterize malignancies, pulmonary fibrosis and other chronic diseases; the design of imaging techniques to quantify infectious diseases continue to lag behind. There exists a need to create more CAD systems capable of detecting and quantifying characteristic patterns often seen in respiratory tract infections such as influenza, bacterial pneumonia, or tuborculosis. One of such patterns is Tree-in-bud (TIB) which presents thickened bronchial structures surrounding by clusters of micro-nodules. Automatic detection of TIB patterns is a challenging task because of their weak boundary, noisy appearance, and small lesion size. In this paper, we present two novel methods for automatically detecting TIB patterns: (1) a fast localization of candidate patterns using information from local scale of the images, and (2) a Möbius invariant feature extraction method based on learned local shape and texture properties. A comparative evaluation of the proposed methods is presented with a dataset of 39 laboratory confirmed viral bronchiolitis human parainfluenza (HPIV) CTs and 21 normal lung CTs. Experimental results demonstrate that the proposed CAD system can achieve high detection rate with an overall accuracy of 90.96%.
尽管放射科医生可以使用计算机辅助检测(CAD)系统来鉴别恶性肿瘤、肺纤维化和其他慢性疾病;但用于量化传染病的成像技术设计仍滞后。需要创建更多能够检测和量化呼吸道感染(如流感、细菌性肺炎或肺结核)中常见特征性模式的CAD系统。其中一种模式是芽生树(TIB),其表现为被微小结节簇包围的增厚支气管结构。由于TIB模式边界模糊、外观有噪声且病变尺寸小,自动检测TIB模式是一项具有挑战性的任务。在本文中,我们提出了两种自动检测TIB模式的新方法:(1)利用图像局部尺度信息快速定位候选模式,以及(2)基于学习到的局部形状和纹理属性的莫比乌斯不变特征提取方法。使用包含39例经实验室确诊的人类副流感病毒(HPIV)病毒性细支气管炎CT图像和21例正常肺CT图像的数据集,对所提出的方法进行了对比评估。实验结果表明,所提出的CAD系统能够实现高检测率,总体准确率为90.96%。