Dalca Adrian, Danagoulian Giovanna, Kikinis Ron, Schmidt Ehud, Golland Polina
MIT Computer Science and Artificial Inteligence, Cambridge, MA, USA.
Med Image Comput Comput Assist Interv. 2011;14(Pt 3):537-45. doi: 10.1007/978-3-642-23626-6_66.
Automatic segmentation of spinal nerve bundles that originate within the dural sac and exit the spinal canal is important for diagnosis and surgical planning. The variability in intensity, contrast, shape and direction of nerves seen in high resolution myelographic MR images makes segmentation a challenging task. In this paper, we present an automatic tracking method for nerve segmentation based on particle filters. We develop a novel approach to particle representation and dynamics, based on Bézier splines. Moreover, we introduce a robust image likelihood model that enables delineation of nerve bundles and ganglia from the surrounding anatomical structures. We demonstrate accurate and fast nerve tracking and compare it to expert manual segmentation.
自动分割起源于硬脊膜囊并穿出椎管的脊神经束,对于诊断和手术规划非常重要。在高分辨率脊髓造影磁共振图像中,神经在强度、对比度、形状和方向上的变化使得分割成为一项具有挑战性的任务。在本文中,我们提出了一种基于粒子滤波器的神经分割自动跟踪方法。我们基于贝塞尔样条开发了一种新颖的粒子表示和动力学方法。此外,我们引入了一种强大的图像似然模型,能够从周围的解剖结构中勾勒出神经束和神经节。我们展示了准确快速的神经跟踪,并将其与专家手动分割进行了比较。