Department of Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, United States.
ACS Chem Biol. 2012 Jan 20;7(1):20-30. doi: 10.1021/cb2002895. Epub 2011 Oct 31.
A multitude of functions have evolved around cytosine within DNA, endowing the base with physiological significance beyond simple information storage. This versatility arises from enzymes that chemically modify cytosine to expand the potential of the genome. Some modifications alter coding sequences, such as deamination of cytosine by AID/APOBEC enzymes to generate immunologic or virologic diversity. Other modifications are critical to epigenetic control, altering gene expression or cellular identity. Of these, cytosine methylation is well understood, in contrast to recently discovered modifications, such as oxidation by TET enzymes to 5-hydroxymethylcytosine. Further complexity results from cytosine demethylation, an enigmatic process that impacts cellular pluripotency. Recent insights help us to propose an integrated DNA demethylation model, accounting for contributions from cytosine oxidation, deamination, and base excision repair. Taken together, this rich medley of alterations renders cytosine a genomic "wild card", whose context-dependent functions make the base far more than a static letter in the code of life.
DNA 中的胞嘧啶衍生出了众多功能,使其具有超越单纯信息存储的生理意义。这种多功能性源于能够对胞嘧啶进行化学修饰的酶,从而扩展了基因组的潜力。一些修饰改变了编码序列,例如 AID/APOBEC 酶对胞嘧啶的脱氨作用,从而产生免疫或病毒多样性。其他修饰对于表观遗传控制至关重要,改变基因表达或细胞身份。在这些修饰中,胞嘧啶甲基化的机制已经得到很好的理解,而与之形成对比的是最近发现的修饰,如 TET 酶将胞嘧啶氧化为 5-羟甲基胞嘧啶。进一步的复杂性来自于胞嘧啶去甲基化,这是一个神秘的过程,影响细胞的多能性。最近的研究进展帮助我们提出了一个综合的 DNA 去甲基化模型,该模型考虑了胞嘧啶氧化、脱氨和碱基切除修复的贡献。综上所述,这种丰富的修饰使胞嘧啶成为基因组的“万能牌”,其依赖于上下文的功能使碱基远不止是生命密码中的一个静态字母。