Institute of Orthopaedic Research and Biomechanics, Centre of Musculoskeletal Research Ulm, Ulm University, 89081, Ulm, Germany.
Knee Surg Sports Traumatol Arthrosc. 2012 Aug;20(8):1488-95. doi: 10.1007/s00167-011-1708-5. Epub 2011 Oct 18.
The purpose of this study was to investigate the forces occurring in human anterior meniscotibial attachment structures under various loading conditions.
Twelve human knee joints were exposed to eight loading conditions (tibial rotations and varus/valgus stress) using a previously described knee joint simulator. Subsequently, the joints were axially compressed (1,000 N at 0° 30° and 60° knee flexion) using a materials testing machine. Then, we performed a tensile test to failure of the ligaments. Finally, we used the strains that occurred during the loading tests and the force-elongation diagrams obtained from the tensile test to recursively assess the resulting forces.
In the anterior meniscotibial ligaments, we found maximum mean strains of 3.8 ± 2.3% under external moments and 1.5 ± 0.9% for axial compression. With an ultimate load of 454 ± 220 N for the anterolateral meniscotibial ligament and 397 ± 275 N for the anteromedial meniscotibial ligament, we estimated maximum forces of up to 50.2 N for the knee simulator tests and 22.6 N for the axial compression tests.
The low forces found in the meniscal ligaments suggest that for normal daily activities, meniscal replacement implants and allografts do not require a very rigid fixation at their bony insertions. However, it remains unknown, what level of force occurs in the meniscotibial ligaments under traumatic situations or impact knee loads. Furthermore, the results of the present study could help to optimize meniscal re-fixation and to improve the properties of meniscal replacement materials, such as tissue-engineered artificial menisci. Moreover, the results could be used for the validation of finite element models of the knee joint with the main focus on the meniscus and its biomechanical relevance for tibiofemoral contact pressure.
本研究旨在探讨在各种载荷条件下,人胫骨前半月板附着结构所受力的情况。
采用一种先前描述过的膝关节模拟器,对 12 个人膝关节进行 8 种加载条件(胫骨旋转和内翻/外翻应力)的暴露。随后,使用材料试验机对关节进行轴向压缩(0°、30°和 60°膝关节屈曲时 1000N)。然后,我们进行了韧带的拉伸破坏试验。最后,我们利用加载试验中产生的应变和拉伸试验中获得的力-伸长图,递归地评估了产生的力。
在前侧半月板胫骨韧带中,我们在外力矩下发现最大平均应变 3.8±2.3%,在轴向压缩下发现最大平均应变 1.5±0.9%。前外侧半月板胫骨韧带的极限载荷为 454±220N,前内侧半月板胫骨韧带的极限载荷为 397±275N,我们估计膝关节模拟器试验的最大力可达 50.2N,轴向压缩试验的最大力可达 22.6N。
半月板韧带中发现的低力表明,对于正常的日常活动,半月板置换植入物和同种异体移植物在其骨插入处不需要非常刚性的固定。然而,在创伤情况下或冲击性膝关节负荷下,半月板胫骨韧带中会出现多大的力,目前仍不清楚。此外,本研究的结果有助于优化半月板再固定,并改善半月板置换材料的性能,如组织工程人工半月板。此外,这些结果可用于具有主要关注半月板及其对胫骨股骨接触压力的生物力学相关性的膝关节有限元模型的验证。