Department of Computer Science, University of California, Irvine, Irvine, CA, 92697, USA,
Neuroinformatics. 2014 Jul;12(3):435-54. doi: 10.1007/s12021-014-9220-y.
Simulating large-scale models of biological motion perception is challenging, due to the required memory to store the network structure and the computational power needed to quickly solve the neuronal dynamics. A low-cost yet high-performance approach to simulating large-scale neural network models in real-time is to leverage the parallel processing capability of graphics processing units (GPUs). Based on this approach, we present a two-stage model of visual area MT that we believe to be the first large-scale spiking network to demonstrate pattern direction selectivity. In this model, component-direction-selective (CDS) cells in MT linearly combine inputs from V1 cells that have spatiotemporal receptive fields according to the motion energy model of Simoncelli and Heeger. Pattern-direction-selective (PDS) cells in MT are constructed by pooling over MT CDS cells with a wide range of preferred directions. Responses of our model neurons are comparable to electrophysiological results for grating and plaid stimuli as well as speed tuning. The behavioral response of the network in a motion discrimination task is in agreement with psychophysical data. Moreover, our implementation outperforms a previous implementation of the motion energy model by orders of magnitude in terms of computational speed and memory usage. The full network, which comprises 153,216 neurons and approximately 40 million synapses, processes 20 frames per second of a 40 × 40 input video in real-time using a single off-the-shelf GPU. To promote the use of this algorithm among neuroscientists and computer vision researchers, the source code for the simulator, the network, and analysis scripts are publicly available.
模拟大规模的生物运动感知模型具有挑战性,这是由于需要存储网络结构的内存和快速解决神经元动力学所需的计算能力。一种低成本但高性能的实时模拟大规模神经网络模型的方法是利用图形处理单元 (GPU) 的并行处理能力。基于这一方法,我们提出了一个视觉区域 MT 的两阶段模型,我们相信这是第一个展示模式方向选择性的大规模尖峰网络。在这个模型中,MT 中的组件方向选择性 (CDS) 细胞根据 Simoncelli 和 Heeger 的运动能量模型,对具有时空感受野的 V1 细胞的输入进行线性组合。MT 中的模式方向选择性 (PDS) 细胞通过对具有广泛首选方向的 MT CDS 细胞进行池化来构建。我们模型神经元的反应与用于光栅和格子刺激以及速度调谐的电生理结果相当。在运动辨别任务中,网络的行为反应与心理物理数据一致。此外,我们的实现方法在计算速度和内存使用方面比以前的运动能量模型实现方法高出几个数量级。整个网络由 153,216 个神经元和约 4000 万个突触组成,使用单个现成的 GPU 实时处理每秒 20 帧、40×40 输入视频。为了促进神经科学家和计算机视觉研究人员使用该算法,模拟器、网络和分析脚本的源代码都是公开的。