Franklin Sarah, Vondriska Thomas M
Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
Circ Cardiovasc Genet. 2011 Oct;4(5):576. doi: 10.1161/CIRCGENETICS.110.957795.
Systems biology, with its associated technologies of proteomics, genomics, and metabolomics, is driving the evolution of our understanding of cardiovascular physiology. Rather than studying individual molecules or even single reactions, a systems approach allows integration of orthogonal data sets from distinct tiers of biological data, including gene, RNA, protein, metabolite, and other component networks. Together these networks give rise to emergent properties of cellular function, and it is their reprogramming that causes disease. We present 5 observations regarding how systems biology is guiding a revisiting of the central dogma: (1) It deemphasizes the unidirectional flow of information from genes to proteins; (2) it reveals the role of modules of molecules as opposed to individual proteins acting in isolation; (3) it enables discovery of novel emergent properties; (4) it demonstrates the importance of networks in biology; and (5) it adds new dimensionality to the study of biological systems.
系统生物学及其相关的蛋白质组学、基因组学和代谢组学技术,正在推动我们对心血管生理学理解的演变。系统生物学方法不是研究单个分子甚至单个反应,而是允许整合来自生物数据不同层次的正交数据集,包括基因、RNA、蛋白质、代谢物和其他成分网络。这些网络共同产生细胞功能的涌现特性,正是它们的重新编程导致了疾病。我们提出了5个关于系统生物学如何指导对中心法则重新审视的观察结果:(1)它淡化了信息从基因到蛋白质的单向流动;(2)它揭示了分子模块的作用,而不是孤立作用的单个蛋白质;(3)它能够发现新的涌现特性;(4)它证明了网络在生物学中的重要性;(5)它为生物系统的研究增加了新的维度。