Suppr超能文献

在蒙特雷湾埃尔克霍恩沼泽河口的光合微生物垫中进行的氢气生产。

Hydrogen production in photosynthetic microbial mats in the Elkhorn Slough estuary, Monterey Bay.

机构信息

Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA.

出版信息

ISME J. 2012 Apr;6(4):863-74. doi: 10.1038/ismej.2011.142. Epub 2011 Oct 20.

Abstract

Hydrogen (H(2)) release from photosynthetic microbial mats has contributed to the chemical evolution of Earth and could potentially be a source of renewable H(2) in the future. However, the taxonomy of H(2)-producing microorganisms (hydrogenogens) in these mats has not been previously determined. With combined biogeochemical and molecular studies of microbial mats collected from Elkhorn Slough, Monterey Bay, California, we characterized the mechanisms of H(2) production and identified a dominant hydrogenogen. Net production of H(2) was observed within the upper photosynthetic layer (0-2 mm) of the mats under dark and anoxic conditions. Pyrosequencing of rRNA gene libraries generated from this layer demonstrated the presence of 64 phyla, with Bacteriodetes, Cyanobacteria and Proteobacteria dominating the sequences. Sequencing of rRNA transcripts obtained from this layer demonstrated that Cyanobacteria dominated rRNA transcript pyrotag libraries. An OTU affiliated to Microcoleus spp. was the most abundant OTU in both rRNA gene and transcript libraries. Depriving mats of sunlight resulted in an order of magnitude decrease in subsequent nighttime H(2) production, suggesting that newly fixed carbon is critical to H(2) production. Suppression of nitrogen (N(2))-fixation in the mats did not suppress H(2) production, which indicates that co-metabolic production of H(2) during N(2)-fixation is not an important contributor to H(2) production. Concomitant production of organic acids is consistent with fermentation of recently produced photosynthate as the dominant mode of H(2) production. Analysis of rRNA % transcript:% gene ratios and H(2)-evolving bidirectional [NiFe] hydrogenase % transcript:% gene ratios indicated that Microcoelus spp. are dominant hydrogenogens in the Elkhorn Slough mats.

摘要

光合微生物席中氢气(H2)的释放促进了地球的化学演化,并且未来可能成为可再生 H2 的来源。然而,这些席中的产生氢气的微生物(产氢菌)的分类尚未确定。通过对加利福尼亚州蒙特雷湾埃尔克霍恩沼泽采集的微生物席进行生物地球化学和分子联合研究,我们确定了 H2 产生的机制并鉴定出了优势产氢菌。在黑暗和缺氧条件下,席的上层光合层(0-2 毫米)中观察到 H2 的净产生。从该层生成的 rRNA 基因文库的 pyrosequencing 表明,有 64 个门,其中 Bacteriodetes、Cyanobacteria 和 Proteobacteria 占主导地位。从该层获得的 rRNA 转录物的测序表明,Cyanobacteria 主导 rRNA 转录物 pyrotag 文库。与 Microcoleus spp. 相关的 OTU 在 rRNA 基因和转录物文库中均为最丰富的 OTU。剥夺席的阳光导致随后夜间 H2 产生的数量级减少,这表明新固定的碳对 H2 产生至关重要。抑制席中的氮(N2)固定并没有抑制 H2 的产生,这表明 N2 固定过程中的共代谢 H2 产生不是 H2 产生的重要贡献者。有机酸的同时产生与最近产生的光合产物的发酵一致,是 H2 产生的主要模式。rRNA %转录:%基因比值和 H2 进化双向[NiFe]氢化酶%转录:%基因比值的分析表明,Microcoelus spp. 是埃尔克霍恩沼泽席中的优势产氢菌。

相似文献

1
Hydrogen production in photosynthetic microbial mats in the Elkhorn Slough estuary, Monterey Bay.
ISME J. 2012 Apr;6(4):863-74. doi: 10.1038/ismej.2011.142. Epub 2011 Oct 20.
2
Anoxic carbon flux in photosynthetic microbial mats as revealed by metatranscriptomics.
ISME J. 2013 Apr;7(4):817-29. doi: 10.1038/ismej.2012.150. Epub 2012 Nov 29.
4
Metagenomics reveals niche partitioning within the phototrophic zone of a microbial mat.
PLoS One. 2018 Sep 11;13(9):e0202792. doi: 10.1371/journal.pone.0202792. eCollection 2018.
5
Revisiting N₂ fixation in Guerrero Negro intertidal microbial mats with a functional single-cell approach.
ISME J. 2015 Feb;9(2):485-96. doi: 10.1038/ismej.2014.144. Epub 2014 Oct 10.
7
Cyanobacterial reuse of extracellular organic carbon in microbial mats.
ISME J. 2016 May;10(5):1240-51. doi: 10.1038/ismej.2015.180. Epub 2015 Oct 23.
8
Fermentation couples Chloroflexi and sulfate-reducing bacteria to Cyanobacteria in hypersaline microbial mats.
Front Microbiol. 2014 Feb 26;5:61. doi: 10.3389/fmicb.2014.00061. eCollection 2014.
9
Metagenomic analysis of intertidal hypersaline microbial mats from Elkhorn Slough, California, grown with and without molybdate.
Stand Genomic Sci. 2017 Nov 15;12:67. doi: 10.1186/s40793-017-0279-6. eCollection 2017.

引用本文的文献

2
Interspecies hydrogen transfer between cyanobacteria and symbiotic bacteria drives nitrogen loss.
Nat Commun. 2025 May 31;16(1):5078. doi: 10.1038/s41467-025-60327-x.
3
The biotechnological potential of the phylum.
Appl Environ Microbiol. 2024 Jun 18;90(6):e0175623. doi: 10.1128/aem.01756-23. Epub 2024 May 6.
4
sp. PCC 6803 Requires the Bidirectional Hydrogenase to Metabolize Glucose and Arginine Under Oxic Conditions.
Front Microbiol. 2022 May 31;13:896190. doi: 10.3389/fmicb.2022.896190. eCollection 2022.
5
Metagenomics reveals niche partitioning within the phototrophic zone of a microbial mat.
PLoS One. 2018 Sep 11;13(9):e0202792. doi: 10.1371/journal.pone.0202792. eCollection 2018.
6
Disentangling the drivers of functional complexity at the metagenomic level in Shark Bay microbial mat microbiomes.
ISME J. 2018 Nov;12(11):2619-2639. doi: 10.1038/s41396-018-0208-8. Epub 2018 Jul 6.
7
Metagenomic analysis of intertidal hypersaline microbial mats from Elkhorn Slough, California, grown with and without molybdate.
Stand Genomic Sci. 2017 Nov 15;12:67. doi: 10.1186/s40793-017-0279-6. eCollection 2017.
9
Hydrogen Dynamics in Cyanobacteria Dominated Microbial Mats Measured by Novel Combined H/HS and H/O Microsensors.
Front Microbiol. 2017 Oct 18;8:2022. doi: 10.3389/fmicb.2017.02022. eCollection 2017.
10
Distribution of Hydrogenases in Cyanobacteria: A Phylum-Wide Genomic Survey.
Front Genet. 2016 Dec 27;7:223. doi: 10.3389/fgene.2016.00223. eCollection 2016.

本文引用的文献

2
Nitrogen fixation and hydrogen metabolism in cyanobacteria.
Microbiol Mol Biol Rev. 2010 Dec;74(4):529-51. doi: 10.1128/MMBR.00033-10.
3
Distribution analysis of hydrogenases in surface waters of marine and freshwater environments.
PLoS One. 2010 Nov 5;5(11):e13846. doi: 10.1371/journal.pone.0013846.
5
Dormancy contributes to the maintenance of microbial diversity.
Proc Natl Acad Sci U S A. 2010 Mar 30;107(13):5881-6. doi: 10.1073/pnas.0912765107. Epub 2010 Mar 15.
6
Biological hydrogen production: prospects and challenges.
Trends Biotechnol. 2010 May;28(5):262-71. doi: 10.1016/j.tibtech.2010.01.007. Epub 2010 Feb 26.
7
Experimental factors affecting PCR-based estimates of microbial species richness and evenness.
ISME J. 2010 May;4(5):642-7. doi: 10.1038/ismej.2009.153. Epub 2010 Jan 21.
8
CD-HIT Suite: a web server for clustering and comparing biological sequences.
Bioinformatics. 2010 Mar 1;26(5):680-2. doi: 10.1093/bioinformatics/btq003. Epub 2010 Jan 6.
9
Horizontal transfer of the nitrogen fixation gene cluster in the cyanobacterium Microcoleus chthonoplastes.
ISME J. 2010 Jan;4(1):121-30. doi: 10.1038/ismej.2009.99. Epub 2009 Sep 10.
10
Using ecological diversity measures with bacterial communities.
FEMS Microbiol Ecol. 2003 Feb 1;43(1):1-11. doi: 10.1111/j.1574-6941.2003.tb01040.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验