Suppr超能文献

基于有向图的图像配准。

Directed graph based image registration.

机构信息

Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA.

出版信息

Comput Med Imaging Graph. 2012 Mar;36(2):139-51. doi: 10.1016/j.compmedimag.2011.09.001. Epub 2011 Oct 19.

Abstract

In this paper, a novel image registration method is proposed to achieve accurate registration between images having large shape differences with the help of a set of appropriate intermediate templates. We first demonstrate that directionality is a key factor in both pairwise image registration and groupwise registration, which is defined in this paper to describe the influence of the registration direction and paths on the registration performance. In our solution, the intermediate template selection and intermediate template guided registration are two coherent steps with directionality being considered. To take advantage of the directionality, a directed graph is built based on the asymmetric distance defined on all ordered image pairs in the image population, which is fundamentally different from the undirected graph with symmetric distance metrics in all previous methods, and the shortest distance between template and subject on the directed graph is calculated. The allocated directed path can be thus utilized to better guide the registration by successively registering the subject through the intermediate templates one by one on the path towards the template. The proposed directed graph based solution can also be used in groupwise registration. Specifically, by building a minimum spanning arborescence (MSA) on the directed graph, the population center, i.e., a selected template, as well as the directed registration paths from all the rest of images to the population center, is determined simultaneously. The performance of directed graph based registration algorithm is demonstrated by the spatial normalization on both synthetic dataset and real brain MR images. It is shown that our method can achieve more accurate registration results than both the undirected graph based solution and the direct pairwise registration.

摘要

本文提出了一种新的图像配准方法,通过使用一组适当的中间模板,实现了具有大形状差异的图像之间的精确配准。我们首先证明了方向性是图像对配准和组配准的关键因素,本文中定义方向性来描述配准方向和路径对配准性能的影响。在我们的解决方案中,中间模板选择和中间模板引导的配准是两个具有方向性的连贯步骤。为了利用方向性,基于所有有序图像对在图像群体中的不对称距离构建有向图,这与以前所有方法中基于对称距离度量的无向图有根本的不同,并且计算模板和主体之间的有向图上的最短距离。因此,可以通过在有向路径上依次通过中间模板对主体进行逐个注册,来更好地引导配准。所提出的基于有向图的解决方案也可用于组配准。具体来说,通过在有向图上构建最小生成树 (MSA),同时确定群体中心(即选择的模板)以及从所有其余图像到群体中心的有向注册路径。基于有向图的配准算法的性能通过对合成数据集和真实脑磁共振图像的空间归一化进行了演示。结果表明,与基于无向图的方法和直接的成对配准相比,我们的方法可以获得更精确的配准结果。

相似文献

1
Directed graph based image registration.基于有向图的图像配准。
Comput Med Imaging Graph. 2012 Mar;36(2):139-51. doi: 10.1016/j.compmedimag.2011.09.001. Epub 2011 Oct 19.
2
Asymmetric image-template registration.非对称图像模板配准
Med Image Comput Comput Assist Interv. 2009;12(Pt 1):565-73. doi: 10.1007/978-3-642-04268-3_70.
3
RABBIT: rapid alignment of brains by building intermediate templates.RABBIT:通过构建中间模板实现大脑的快速对齐。
Neuroimage. 2009 Oct 1;47(4):1277-87. doi: 10.1016/j.neuroimage.2009.02.043. Epub 2009 Mar 10.
8
Intermediate templates guided groupwise registration of diffusion tensor images.中间模板引导的弥散张量图像配准组。
Neuroimage. 2011 Jan 15;54(2):928-39. doi: 10.1016/j.neuroimage.2010.09.019. Epub 2010 Sep 17.
10
ABSORB: Atlas Building by Self-organized Registration and Bundling.吸收:通过自组织注册和捆绑的图谱构建。
Neuroimage. 2010 Jul 1;51(3):1057-70. doi: 10.1016/j.neuroimage.2010.03.010. Epub 2010 Mar 10.

本文引用的文献

1
BEST INDIVIDUAL TEMPLATE SELECTION FROM DEFORMATION TENSOR MINIMIZATION.基于变形张量最小化的最佳个体模板选择
Proc IEEE Int Symp Biomed Imaging. 2008 May;2008:460-463. doi: 10.1109/ISBI.2008.4541032. Epub 2008 Jun 13.
2
A generalized learning based framework for fast brain image registration.一种基于广义学习的快速脑图像配准框架。
Med Image Comput Comput Assist Interv. 2010;13(Pt 2):306-14. doi: 10.1007/978-3-642-15745-5_38.
3
Intermediate templates guided groupwise registration of diffusion tensor images.中间模板引导的弥散张量图像配准组。
Neuroimage. 2011 Jan 15;54(2):928-39. doi: 10.1016/j.neuroimage.2010.09.019. Epub 2010 Sep 17.
4
GRAM: A framework for geodesic registration on anatomical manifolds.GRAM:一种解剖流形上测地线配准的框架。
Med Image Anal. 2010 Oct;14(5):633-42. doi: 10.1016/j.media.2010.06.001. Epub 2010 Jun 8.
6
Asymmetric image-template registration.非对称图像模板配准
Med Image Comput Comput Assist Interv. 2009;12(Pt 1):565-73. doi: 10.1007/978-3-642-04268-3_70.
7
ABSORB: Atlas Building by Self-organized Registration and Bundling.吸收:通过自组织注册和捆绑的图谱构建。
Neuroimage. 2010 Jul 1;51(3):1057-70. doi: 10.1016/j.neuroimage.2010.03.010. Epub 2010 Mar 10.
9
Image-driven population analysis through mixture modeling.通过混合模型进行图像驱动的群体分析。
IEEE Trans Med Imaging. 2009 Sep;28(9):1473-87. doi: 10.1109/TMI.2009.2017942. Epub 2009 Mar 24.
10
RABBIT: rapid alignment of brains by building intermediate templates.RABBIT:通过构建中间模板实现大脑的快速对齐。
Neuroimage. 2009 Oct 1;47(4):1277-87. doi: 10.1016/j.neuroimage.2009.02.043. Epub 2009 Mar 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验