Suppr超能文献

鸣禽基底神经节依赖的强化学习假说。

A hypothesis for basal ganglia-dependent reinforcement learning in the songbird.

机构信息

McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA.

出版信息

Neuroscience. 2011 Dec 15;198:152-70. doi: 10.1016/j.neuroscience.2011.09.069. Epub 2011 Oct 13.

Abstract

Most of our motor skills are not innately programmed, but are learned by a combination of motor exploration and performance evaluation, suggesting that they proceed through a reinforcement learning (RL) mechanism. Songbirds have emerged as a model system to study how a complex behavioral sequence can be learned through an RL-like strategy. Interestingly, like motor sequence learning in mammals, song learning in birds requires a basal ganglia (BG)-thalamocortical loop, suggesting common neural mechanisms. Here, we outline a specific working hypothesis for how BG-forebrain circuits could utilize an internally computed reinforcement signal to direct song learning. Our model includes a number of general concepts borrowed from the mammalian BG literature, including a dopaminergic reward prediction error and dopamine-mediated plasticity at corticostriatal synapses. We also invoke a number of conceptual advances arising from recent observations in the songbird. Specifically, there is evidence for a specialized cortical circuit that adds trial-to-trial variability to stereotyped cortical motor programs, and a role for the BG in "biasing" this variability to improve behavioral performance. This BG-dependent "premotor bias" may in turn guide plasticity in downstream cortical synapses to consolidate recently learned song changes. Given the similarity between mammalian and songbird BG-thalamocortical circuits, our model for the role of the BG in this process may have broader relevance to mammalian BG function.

摘要

我们的大多数运动技能并非天生编程,而是通过运动探索和表现评估相结合的方式习得的,这表明它们通过强化学习(RL)机制进行。鸣禽已成为研究复杂行为序列如何通过类似 RL 的策略学习的模型系统。有趣的是,与哺乳动物的运动序列学习一样,鸟类的歌唱学习需要基底神经节(BG)-丘脑皮质回路,这表明存在共同的神经机制。在这里,我们概述了一个具体的工作假设,即 BG-大脑前回路如何利用内部计算的强化信号来指导歌唱学习。我们的模型借鉴了哺乳动物 BG 文献中的许多一般概念,包括多巴胺能奖励预测误差和多巴胺介导的皮质纹状体突触可塑性。我们还援引了一些来自最近在鸣禽中观察到的概念性进展。具体来说,有证据表明存在一个专门的皮质回路,它为刻板的皮质运动程序增加了逐次试验的可变性,并且 BG 在“偏向”这种可变性以提高行为表现方面发挥作用。这种 BG 依赖性的“前运动偏向”反过来可能指导下游皮质突触的可塑性,以巩固最近学习的歌曲变化。鉴于哺乳动物和鸣禽 BG-丘脑皮质回路之间的相似性,我们关于 BG 在该过程中作用的模型可能对哺乳动物 BG 功能具有更广泛的相关性。

相似文献

1
A hypothesis for basal ganglia-dependent reinforcement learning in the songbird.
Neuroscience. 2011 Dec 15;198:152-70. doi: 10.1016/j.neuroscience.2011.09.069. Epub 2011 Oct 13.
2
The Avian Basal Ganglia Are a Source of Rapid Behavioral Variation That Enables Vocal Motor Exploration.
J Neurosci. 2018 Nov 7;38(45):9635-9647. doi: 10.1523/JNEUROSCI.2915-17.2018. Epub 2018 Sep 24.
3
Variability in action: Contributions of a songbird cortical-basal ganglia circuit to vocal motor learning and control.
Neuroscience. 2015 Jun 18;296:39-47. doi: 10.1016/j.neuroscience.2014.10.010. Epub 2014 Oct 18.
4
Social modulation of learned behavior by dopamine in the basal ganglia: insights from songbirds.
J Physiol Paris. 2013 Jun;107(3):219-29. doi: 10.1016/j.jphysparis.2012.09.002. Epub 2012 Sep 29.
5
Seasonal plasticity of song behavior relies on motor and syntactic variability induced by a basal ganglia-forebrain circuit.
Neuroscience. 2017 Sep 17;359:49-68. doi: 10.1016/j.neuroscience.2017.07.007. Epub 2017 Jul 14.
7
A basal ganglia-forebrain circuit in the songbird biases motor output to avoid vocal errors.
Proc Natl Acad Sci U S A. 2009 Jul 28;106(30):12518-23. doi: 10.1073/pnas.0903214106. Epub 2009 Jul 13.
8
Vocal babbling in songbirds requires the basal ganglia-recipient motor thalamus but not the basal ganglia.
J Neurophysiol. 2011 Jun;105(6):2729-39. doi: 10.1152/jn.00823.2010. Epub 2011 Mar 23.
9
10
Mechanisms and time course of vocal learning and consolidation in the adult songbird.
J Neurophysiol. 2011 Oct;106(4):1806-21. doi: 10.1152/jn.00311.2011. Epub 2011 Jul 6.

引用本文的文献

1
Correctness is its own reward: bootstrapping error signals in self-guided reinforcement learning.
bioRxiv. 2025 Aug 19:2025.07.18.665446. doi: 10.1101/2025.07.18.665446.
2
Holistic Motor Control of Zebra Finch Song Syllable Sequences.
bioRxiv. 2025 May 5:2025.05.04.652139. doi: 10.1101/2025.05.04.652139.
3
Change of Spiny Neuron Structure in the Basal Ganglia Song Circuit and Its Regulation by miR-9 during Song Development.
J Neurosci. 2025 Jul 16;45(29):e2276232025. doi: 10.1523/JNEUROSCI.2276-23.2025.
4
Dynamics of striatal action selection and reinforcement learning.
Elife. 2025 May 8;13:RP101747. doi: 10.7554/eLife.101747.
5
Correlates of Vocal Tract Evolution in Late Pliocene and Pleistocene Hominins.
Hum Nat. 2025 Mar;36(1):22-69. doi: 10.1007/s12110-025-09487-9. Epub 2025 Apr 17.
6
Natural behaviour is learned through dopamine-mediated reinforcement.
Nature. 2025 May;641(8063):699-706. doi: 10.1038/s41586-025-08729-1. Epub 2025 Mar 12.
7
Dual neuromodulatory dynamics underlie birdsong learning.
Nature. 2025 May;641(8063):690-698. doi: 10.1038/s41586-025-08694-9. Epub 2025 Mar 12.
8
Comparative approaches to the neurobiology of avian vocal learning.
Curr Opin Neurobiol. 2025 Jun;92:102993. doi: 10.1016/j.conb.2025.102993. Epub 2025 Mar 4.
9
Social context affects sequence modification learning in birdsong.
Front Psychol. 2025 Feb 5;16:1488762. doi: 10.3389/fpsyg.2025.1488762. eCollection 2025.
10
Weight Transfer in the Reinforcement Learning Model of Songbird Acquisition.
bioRxiv. 2024 Dec 30:2024.12.30.628217. doi: 10.1101/2024.12.30.628217.

本文引用的文献

3
Neural coding of syntactic structure in learned vocalizations in the songbird.
J Neurosci. 2011 Jul 6;31(27):10023-33. doi: 10.1523/JNEUROSCI.1606-11.2011.
4
Learning to breathe and sing: development of respiratory-vocal coordination in young songbirds.
J Neurophysiol. 2011 Oct;106(4):1747-65. doi: 10.1152/jn.00247.2011. Epub 2011 Jun 22.
5
Changes in the neural control of a complex motor sequence during learning.
J Neurophysiol. 2011 Jul;106(1):386-97. doi: 10.1152/jn.00018.2011. Epub 2011 May 4.
6
Dopamine-mediated learning and switching in cortico-striatal circuit explain behavioral changes in reinforcement learning.
Front Behav Neurosci. 2011 Mar 21;5:15. doi: 10.3389/fnbeh.2011.00015. eCollection 2011.
7
Basal ganglia neurons dynamically facilitate exploration during associative learning.
J Neurosci. 2011 Mar 30;31(13):4878-85. doi: 10.1523/JNEUROSCI.3658-10.2011.
8
Vocal babbling in songbirds requires the basal ganglia-recipient motor thalamus but not the basal ganglia.
J Neurophysiol. 2011 Jun;105(6):2729-39. doi: 10.1152/jn.00823.2010. Epub 2011 Mar 23.
9
Learning the microstructure of successful behavior.
Nat Neurosci. 2011 Mar;14(3):373-80. doi: 10.1038/nn.2748. Epub 2011 Jan 30.
10
Making memories last: the synaptic tagging and capture hypothesis.
Nat Rev Neurosci. 2011 Jan;12(1):17-30. doi: 10.1038/nrn2963.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验