Division of Neuroscience, Institute of Cellular Physiology, National Autonomous University of Mexico, Mexico City, DF 04510 Mexico.
J Neurosci. 2011 Oct 19;31(42):14972-83. doi: 10.1523/JNEUROSCI.3226-11.2011.
Selection and inhibition of motor behaviors are related to the coordinated activity and compositional capabilities of striatal cell assemblies. Striatal network activity represents a main step in basal ganglia processing. The dopaminergic system differentially regulates distinct populations of striatal medium spiny neurons (MSNs) through the activation of D(1)- or D(2)-type receptors. Although postsynaptic and presynaptic actions of these receptors are clearly different in MSNs during cell-focused studies, their activation during network activity has shown inconsistent responses. Therefore, using electrophysiological techniques, functional multicell calcium imaging, and neuronal population analysis in rat corticostriatal slices, we describe the effect of selective dopaminergic receptor activation in the striatal network by observing cell assembly configurations. At the microcircuit level, during striatal network activity, the selective activation of either D(1)- or D(2)-type receptors is reflected as overall increases in neuronal synchronization. However, graph theory techniques applied to the transitions between network states revealed receptor-specific configurations of striatal cell assemblies: D(1) receptor activation generated closed trajectories with high recurrence and few alternate routes favoring the selection of specific sequences, whereas D(2) receptor activation created trajectories with low recurrence and more alternate pathways while promoting diverse transitions among neuronal pools. At the single-cell level, the activation of dopaminergic receptors enhanced the negative-slope conductance region (NSCR) in D(1)-type-responsive cells, whereas in neurons expressing D(2)-type receptors, the NSCR was decreased. Consequently, receptor-specific network dynamics most probably result from the interplay of postsynaptic and presynaptic dopaminergic actions.
运动行为的选择和抑制与纹状体细胞集合的协调活动和组成能力有关。纹状体网络活动代表基底神经节处理的主要步骤。多巴胺能系统通过激活 D1-或 D2-型受体,对不同群体的纹状体中间神经元 (MSNs) 进行差异调节。虽然在细胞聚焦研究中,这些受体在 MSNs 中的突触后和突触前作用明显不同,但在网络活动期间,它们的激活显示出不一致的反应。因此,我们使用电生理技术、功能多细胞钙成像和大鼠皮质纹状体切片中的神经元群体分析,通过观察细胞集合配置来描述选择性多巴胺受体激活对纹状体网络的影响。在微电路水平上,在纹状体网络活动期间,选择性激活 D1-或 D2-型受体反映为神经元同步性的整体增加。然而,应用于网络状态之间转换的图论技术揭示了纹状体细胞集合的受体特异性配置:D1 受体的激活产生具有高重现性和很少替代路径的封闭轨迹,有利于特定序列的选择,而 D2 受体的激活创建具有低重现性和更多替代路径的轨迹,同时促进神经元池之间的多样化转换。在单细胞水平上,多巴胺受体的激活增强了 D1 型反应细胞中的负斜率电导区 (NSCR),而在表达 D2 型受体的神经元中,NSCR 则降低。因此,受体特异性网络动态很可能是由于突触后和突触前多巴胺作用的相互作用所致。