Kavli Institute of Nanoscience, Delft University of Technology, Delft, Lorentzweg 1, 2628 CJ, The Netherlands.
Nano Lett. 2011 Dec 14;11(12):5489-93. doi: 10.1021/nl203299e. Epub 2011 Oct 27.
Single-molecule force-spectroscopy methods such as magnetic and optical tweezers have emerged as powerful tools for the detailed study of biomechanical aspects of DNA-enzyme interactions. As typically only a single molecule of DNA is addressed in an individual experiment, these methods suffer from a low data throughput. Here, we report a novel method for targeted, nonrandom immobilization of DNA-tethered magnetic beads in regular arrays through microcontact printing of DNA end-binding labels. We show that the increase in density due to the arrangement of DNA-bead tethers in regular arrays can give rise to a one-order-of-magnitude improvement in data-throughput in magnetic tweezers experiments. We demonstrate the applicability of this technique in tweezers experiments where up to 450 beads are simultaneously tracked in parallel, yielding statistical data on the mechanics of DNA for 357 molecules from a single experimental run. Our technique paves the way for kilo-molecule force spectroscopy experiments, enabling the study of rare events in DNA-protein interactions and the acquisition of large statistical data sets from individual experimental runs.
单分子力谱技术,如磁镊和光镊,已经成为研究 DNA-酶相互作用生物力学方面的有力工具。由于在单个实验中通常只处理单个 DNA 分子,这些方法的数据吞吐量较低。在这里,我们报告了一种通过 DNA 末端结合标签的微接触印刷来实现 DNA 连接磁珠在规则阵列中靶向、非随机固定的新方法。我们表明,由于 DNA-珠系链在规则阵列中的排列而导致的密度增加,可以使磁镊实验中的数据吞吐量提高一个数量级。我们在镊实验中证明了该技术的适用性,其中可以同时平行跟踪多达 450 个珠子,从单个实验运行中获得 357 个分子的 DNA 力学统计数据。我们的技术为千分子力谱实验铺平了道路,使研究 DNA-蛋白质相互作用中的罕见事件以及从单个实验运行中获取大量统计数据集成为可能。