Suppr超能文献

热厌氧菌糖组揭示了细菌中戊糖和己糖共同利用的机制。

The Thermoanaerobacter glycobiome reveals mechanisms of pentose and hexose co-utilization in bacteria.

机构信息

CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and BioEnergy Genome Center, Qingdao Institute of BioEnergy and BioProcess Technology, Chinese Academy of Sciences, Qingdao, China.

出版信息

PLoS Genet. 2011 Oct;7(10):e1002318. doi: 10.1371/journal.pgen.1002318. Epub 2011 Oct 13.

Abstract

Thermoanaerobic bacteria are of interest in cellulosic-biofuel production, due to their simultaneous pentose and hexose utilization (co-utilization) and thermophilic nature. In this study, we experimentally reconstructed the structure and dynamics of the first genome-wide carbon utilization network of thermoanaerobes. The network uncovers numerous novel pathways and identifies previously unrecognized but crucial pathway interactions and the associated key junctions. First, glucose, xylose, fructose, and cellobiose catabolism are each featured in distinct functional modules; the transport systems of hexose and pentose are apparently both regulated by transcriptional antiterminators of the BglG family, which is consistent with pentose and hexose co-utilization. Second, glucose and xylose modules cooperate in that the activity of the former promotes the activity of the latter via activating xylose transport and catabolism, while xylose delays cell lysis by sustaining coenzyme and ion metabolism. Third, the vitamin B₁₂ pathway appears to promote ethanologenesis through ethanolamine and 1, 2-propanediol, while the arginine deiminase pathway probably contributes to cell survival in stationary phase. Moreover, by experimentally validating the distinct yet collaborative nature of glucose and xylose catabolism, we demonstrated that these novel network-derived features can be rationally exploited for product-yield enhancement via optimized timing and balanced loading of the carbon supply in a substrate-specific manner. Thus, this thermoanaerobic glycobiome reveals novel genetic features in carbon catabolism that may have immediate industrial implications and provides novel strategies and targets for fermentation and genome engineering.

摘要

嗜热厌氧菌在纤维质生物燃料生产中具有重要意义,因为它们能够同时利用戊糖和己糖(共利用),并且具有嗜热特性。在这项研究中,我们通过实验重建了第一个嗜热厌氧菌全基因组碳利用网络的结构和动态。该网络揭示了许多新的途径,并确定了以前未被识别但至关重要的途径相互作用和相关的关键节点。首先,葡萄糖、木糖、果糖和纤维二糖的分解代谢都具有独特的功能模块;己糖和戊糖的运输系统显然都受到 BglG 家族转录反终止子的调节,这与戊糖和己糖的共利用一致。其次,葡萄糖和木糖模块相互协作,前者的活性通过激活木糖的运输和分解代谢来促进后者的活性,而木糖通过维持辅酶和离子代谢来延迟细胞裂解。第三,维生素 B₁₂ 途径似乎通过乙醇胺和 1,2-丙二醇促进乙醇发酵,而精氨酸脱氨酶途径可能有助于细胞在静止期的存活。此外,通过实验验证葡萄糖和木糖分解代谢的独特但协作性质,我们证明了这些新的网络衍生特征可以通过优化碳供应的时间和平衡加载方式,以特定于底物的方式,合理地用于提高产物产量。因此,这种嗜热厌氧菌糖组揭示了碳代谢中的新遗传特征,这些特征可能具有直接的工业意义,并为发酵和基因组工程提供了新的策略和目标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d386/3192829/d88b06eea2e2/pgen.1002318.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验