Shaw A Joe, Podkaminer Kara K, Desai Sunil G, Bardsley John S, Rogers Stephen R, Thorne Philip G, Hogsett David A, Lynd Lee R
Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA.
Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):13769-74. doi: 10.1073/pnas.0801266105. Epub 2008 Sep 8.
We report engineering Thermoanaerobacterium saccharolyticum, a thermophilic anaerobic bacterium that ferments xylan and biomass-derived sugars, to produce ethanol at high yield. Knockout of genes involved in organic acid formation (acetate kinase, phosphate acetyltransferase, and L-lactate dehydrogenase) resulted in a strain able to produce ethanol as the only detectable organic product and substantial changes in electron flow relative to the wild type. Ethanol formation in the engineered strain (ALK2) utilizes pyruvate:ferredoxin oxidoreductase with electrons transferred from ferredoxin to NAD(P), a pathway different from that in previously described microbes with a homoethanol fermentation. The homoethanologenic phenotype was stable for >150 generations in continuous culture. The growth rate of strain ALK2 was similar to the wild-type strain, with a reduction in cell yield proportional to the decreased ATP availability resulting from acetate kinase inactivation. Glucose and xylose are co-utilized and utilization of mannose and arabinose commences before glucose and xylose are exhausted. Using strain ALK2 in simultaneous hydrolysis and fermentation experiments at 50 degrees C allows a 2.5-fold reduction in cellulase loading compared with using Saccharomyces cerevisiae at 37 degrees C. The maximum ethanol titer produced by strain ALK2, 37 g/liter, is the highest reported thus far for a thermophilic anaerobe, although further improvements are desired and likely possible. Our results extend the frontier of metabolic engineering in thermophilic hosts, have the potential to significantly lower the cost of cellulosic ethanol production, and support the feasibility of further cost reductions through engineering a diversity of host organisms.
我们报道了对嗜热厌氧细菌嗜糖栖热厌氧杆菌(Thermoanaerobacterium saccharolyticum)进行工程改造的成果,该细菌可发酵木聚糖和生物质衍生糖,以高产率生产乙醇。敲除参与有机酸形成的基因(乙酸激酶、磷酸乙酰转移酶和L-乳酸脱氢酶)后,得到了一种菌株,该菌株能够将乙醇作为唯一可检测到的有机产物进行生产,并且相对于野生型,电子流发生了显著变化。工程菌株(ALK2)中的乙醇形成利用丙酮酸:铁氧化还原蛋白氧化还原酶,电子从铁氧化还原蛋白转移至NAD(P),这一途径不同于先前描述的具有同型乙醇发酵的微生物中的途径。在连续培养中,同型乙醇生成表型在超过150代中保持稳定。ALK2菌株的生长速率与野生型菌株相似,细胞产量的降低与因乙酸激酶失活导致的ATP可用性降低成比例。葡萄糖和木糖可共同利用,甘露糖和阿拉伯糖的利用在葡萄糖和木糖耗尽之前就开始了。在50℃的同步水解和发酵实验中使用ALK2菌株,与在37℃使用酿酒酵母相比,纤维素酶负载量可降低2.5倍。ALK2菌株产生的最大乙醇滴度为37克/升,这是迄今为止报道的嗜热厌氧菌中的最高值,不过仍需要进一步改进且可能实现进一步改进。我们的结果扩展了嗜热宿主中代谢工程的前沿领域,有可能显著降低纤维素乙醇的生产成本,并支持通过对多种宿主生物进行工程改造进一步降低成本的可行性。