Suppr超能文献

核糖体上的核苷酸修饰和 tRNA 反密码子-mRNA 密码子相互作用。

Nucleotide modifications and tRNA anticodon-mRNA codon interactions on the ribosome.

机构信息

Department of Biosciences and Nutrition, Center for Biosciences, Karolinska Institutet, Huddinge, Sweden.

出版信息

RNA. 2011 Dec;17(12):2177-88. doi: 10.1261/rna.029231.111. Epub 2011 Oct 25.

Abstract

We have carried out molecular dynamics simulations of the tRNA anticodon and mRNA codon, inside the ribosome, to study the effect of the common tRNA modifications cmo(5)U34 and m(6)A37. In tRNA(Val), these modifications allow all four nucleotides to be successfully read at the wobble position in a codon. Previous data suggest that entropic effects are mainly responsible for the extended reading capabilities, but detailed mechanisms have remained unknown. We have performed a wide range of simulations to elucidate the details of these mechanisms at the atomic level and quantify their effects: extensive free energy perturbation coupled with umbrella sampling, entropy calculations of tRNA (free and bound to the ribosome), and thorough structural analysis of the ribosomal decoding center. No prestructuring effect on the tRNA anticodon stem-loop from the two modifications could be observed, but we identified two mechanisms that may contribute to the expanded decoding capability by the modifications: The further reach of the cmo(5)U34 allows an alternative outer conformation to be formed for the noncognate base pairs, and the modification results in increased contacts between tRNA, mRNA, and the ribosome.

摘要

我们在核糖体内部对 tRNA 反密码子和 mRNA 密码子进行了分子动力学模拟,以研究常见的 tRNA 修饰 cmo(5)U34 和 m(6)A37 的影响。在 tRNA(Val)中,这些修饰允许所有四个核苷酸在密码子的摆动位置成功读取。先前的数据表明,熵效应主要负责扩展读取能力,但详细的机制仍然未知。我们进行了广泛的模拟,以阐明这些机制在原子水平上的细节,并量化它们的影响:广泛的自由能微扰结合伞状采样,tRNA(游离和与核糖体结合)的熵计算,以及核糖体解码中心的彻底结构分析。从这两种修饰中都没有观察到对 tRNA 反密码子茎环的预结构效应,但我们确定了两种可能通过修饰来增强解码能力的机制:cmo(5)U34 的进一步延伸允许形成非同源碱基对的替代外部构象,并且修饰导致 tRNA、mRNA 和核糖体之间的接触增加。

相似文献

1
Nucleotide modifications and tRNA anticodon-mRNA codon interactions on the ribosome.
RNA. 2011 Dec;17(12):2177-88. doi: 10.1261/rna.029231.111. Epub 2011 Oct 25.
2
Disruption of evolutionarily correlated tRNA elements impairs accurate decoding.
Proc Natl Acad Sci U S A. 2020 Jul 14;117(28):16333-16338. doi: 10.1073/pnas.2004170117. Epub 2020 Jun 29.
3
A new understanding of the decoding principle on the ribosome.
Nature. 2012 Mar 21;484(7393):256-9. doi: 10.1038/nature10913.
4
Anticodon domain modifications contribute order to tRNA for ribosome-mediated codon binding.
Biochemistry. 2008 Jun 10;47(23):6117-29. doi: 10.1021/bi702356j. Epub 2008 May 13.
6
Structural basis for reduced ribosomal A-site fidelity in response to P-site codon-anticodon mismatches.
J Biol Chem. 2023 Apr;299(4):104608. doi: 10.1016/j.jbc.2023.104608. Epub 2023 Mar 15.
7
tRNA's wobble decoding of the genome: 40 years of modification.
J Mol Biol. 2007 Feb 9;366(1):1-13. doi: 10.1016/j.jmb.2006.11.046. Epub 2006 Nov 15.
9
Unique anticodon loop conformation with the flipped-out wobble nucleotide in the crystal structure of unbound tRNA.
RNA. 2021 Nov;27(11):1330-1338. doi: 10.1261/rna.078863.121. Epub 2021 Jul 27.

引用本文的文献

1
Role of RNA modifications in blood development and regeneration.
Exp Hematol. 2024 Oct;138:104279. doi: 10.1016/j.exphem.2024.104279. Epub 2024 Jul 14.
2
The Association Between Mitochondrial tRNA Variants and Hearing Loss: A Case-Control Study.
Pharmgenomics Pers Med. 2024 Mar 28;17:77-89. doi: 10.2147/PGPM.S441281. eCollection 2024.
3
tRNA epitranscriptome determines pathogenicity of the opportunistic pathogen .
Proc Natl Acad Sci U S A. 2024 Mar 12;121(11):e2312874121. doi: 10.1073/pnas.2312874121. Epub 2024 Mar 7.
4
Occurrence and stability of anion-π interactions between phosphate and nucleobases in functional RNA molecules.
Nucleic Acids Res. 2022 Nov 11;50(20):11455-11469. doi: 10.1093/nar/gkac1081.
5
Selection of start codon during mRNA scanning in eukaryotic translation initiation.
Commun Biol. 2022 Jun 15;5(1):587. doi: 10.1038/s42003-022-03534-2.
6
Twice exploration of tRNA +1 frameshifting in an elongation cycle of protein synthesis.
Nucleic Acids Res. 2021 Sep 27;49(17):10046-10060. doi: 10.1093/nar/gkab734.
8
RNA modifications as a common denominator between tRNA and mRNA.
Curr Genet. 2021 Aug;67(4):545-551. doi: 10.1007/s00294-021-01168-1. Epub 2021 Mar 8.

本文引用的文献

2
Binding of aminoglycoside antibiotics to helix 69 of 23S rRNA.
Nucleic Acids Res. 2010 May;38(9):3094-105. doi: 10.1093/nar/gkp1253. Epub 2010 Jan 27.
3
Free energy calculation of modified base-pair formation in explicit solvent: A predictive model.
RNA. 2009 Dec;15(12):2278-87. doi: 10.1261/rna.1734309. Epub 2009 Oct 27.
5
CHARMM: the biomolecular simulation program.
J Comput Chem. 2009 Jul 30;30(10):1545-614. doi: 10.1002/jcc.21287.
6
Stochastic gating and drug-ribosome interactions.
J Mol Biol. 2009 Feb 27;386(3):648-61. doi: 10.1016/j.jmb.2008.12.035. Epub 2008 Dec 24.
8
Molecular dynamics study of the ribosomal A-site.
J Phys Chem B. 2008 Nov 27;112(47):15227-43. doi: 10.1021/jp806814s.
9
Bringing order to translation: the contributions of transfer RNA anticodon-domain modifications.
EMBO Rep. 2008 Jul;9(7):629-35. doi: 10.1038/embor.2008.104. Epub 2008 Jun 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验