Suppr超能文献

细胞外尖峰排序算法在单通道记录中的性能比较。

Performance comparison of extracellular spike sorting algorithms for single-channel recordings.

机构信息

Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University, Karlovo nam. 13, 121 35 Praha 2, Czech Republic.

出版信息

J Neurosci Methods. 2012 Jan 30;203(2):369-76. doi: 10.1016/j.jneumeth.2011.10.013. Epub 2011 Oct 21.

Abstract

Proper classification of action potentials from extracellular recordings is essential for making an accurate study of neuronal behavior. Many spike sorting algorithms have been presented in the technical literature. However, no comparative analysis has hitherto been performed. In our study, three widely-used publicly-available spike sorting algorithms (WaveClus, KlustaKwik, OSort) were compared with regard to their parameter settings. The algorithms were evaluated using 112 artificial signals (publicly available online) with 2-9 different neurons and varying noise levels between 0.00 and 0.60. An optimization technique based on Adjusted Mutual Information was employed to find near-optimal parameter settings for a given artificial signal and algorithm. All three algorithms performed significantly better (p<0.01) with optimized parameters than with the default ones. WaveClus was the most accurate spike sorting algorithm, receiving the best evaluation score for 60% of all signals. OSort operated at almost five times the speed of the other algorithms. In terms of accuracy, OSort performed significantly less well (p<0.01) than WaveClus for signals with a noise level in the range 0.15-0.30. KlustaKwik achieved similar scores to WaveClus for signals with low noise level 0.00-0.15 and was worse otherwise. In conclusion, none of the three compared algorithms was optimal in general. The accuracy of the algorithms depended on proper choice of the algorithm parameters and also on specific properties of the examined signal.

摘要

正确分类细胞外记录的动作电位对于准确研究神经元行为至关重要。许多尖峰分类算法已经在技术文献中提出。然而,迄今尚未进行比较分析。在我们的研究中,针对三个广泛使用的公开可用的尖峰分类算法(WaveClus、KlustaKwik、OSort),比较了它们的参数设置。使用具有 2-9 个不同神经元的 112 个人工信号(在线公开)以及在 0.00 到 0.60 之间变化的噪声水平来评估算法。使用基于调整互信息的优化技术为给定的人工信号和算法找到接近最优的参数设置。所有三个算法在使用优化参数时都明显优于使用默认参数(p<0.01)。WaveClus 是最准确的尖峰分类算法,在所有信号的 60%中获得最佳评估得分。OSort 的速度几乎是其他算法的五倍。在准确性方面,对于噪声水平在 0.15-0.30 范围内的信号,OSort 的性能明显不如 WaveClus(p<0.01)。KlustaKwik 在噪声水平较低的情况下(0.00-0.15)与 WaveClus 获得相似的分数,而在其他情况下则更差。总之,在一般情况下,三个比较的算法都不是最优的。算法的准确性取决于算法参数的正确选择,以及所研究信号的特定性质。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验