State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
Theor Appl Genet. 2012 Feb;124(3):485-94. doi: 10.1007/s00122-011-1722-5. Epub 2011 Oct 29.
The brown planthopper (Nilaparvata lugens Stål; BPH) has become a severe constraint on rice production. Identification and pyramiding BPH-resistance genes is an economical and effective solution to increase the resistance level of rice varieties. All the BPH-resistance genes identified to date have been from indica rice or wild species. The BPH12 gene in the indica rice accession B14 is derived from the wild species Oryza latifolia. Using an F(2) population from a cross between the indica cultivar 93-11 and B14, we mapped the BPH12 gene to a 1.9-cM region on chromosome 4, flanked by the markers RM16459 and RM1305. In this population, BPH12 appeared to be partially dominant and explained 73.8% of the phenotypic variance in BPH resistance. A near-isogenic line (NIL) containing the BPH12 locus in the background of the susceptible japonica variety Nipponbare was developed and crossed with a NIL carrying BPH6 to generate a pyramid line (PYL) with both genes. BPH insects showed significant differences in non-preference in comparisons between the lines harboring resistance genes (NILs and PYL) and Nipponbare. BPH growth and development were inhibited and survival rates were lower on the NIL-BPH12 and NIL-BPH6 plants compared to the recurrent parent Nipponbare. PYL-BPH6 + BPH12 exhibited 46.4, 26.8 and 72.1% reductions in population growth rates (PGR) compared to NIL-BPH12, NIL-BPH6 and Nipponbare, respectively. Furthermore, insect survival rates were the lowest on the PYL-BPH6 + BPH12 plants. These results demonstrated that pyramiding different BPH-resistance genes resulted in stronger antixenotic and antibiotic effects on the BPH insects. This gene pyramiding strategy should be of great benefit for the breeding of BPH-resistant japonica rice varieties.
褐飞虱(Nilaparvata lugens Stål;BPH)已成为水稻生产的严重制约因素。鉴定和聚合 BPH 抗性基因是提高水稻品种抗性水平的一种经济有效的方法。迄今为止,所有鉴定的 BPH 抗性基因都来自籼稻或野生种。籼稻品种 B14 中的 BPH12 基因来自野生种 Oryza latifolia。利用籼稻品种 93-11 和 B14 杂交的 F2 群体,我们将 BPH12 基因定位在 4 号染色体上 1.9cM 的区域,该区域由标记 RM16459 和 RM1305 侧翼。在该群体中,BPH12 表现为部分显性,解释了 BPH 抗性表型方差的 73.8%。以感病粳稻品种 Nipponbare 为背景,含有 BPH12 基因座的近等基因系(NIL)被开发出来,并与携带 BPH6 的 NIL 杂交,生成含有两个基因的聚合系(PYL)。与携带抗性基因的 NIL(BPH12 和 BPH6)和 Nipponbare 相比,携带抗性基因的系(NIL 和 PYL)和 Nipponbare 之间的非偏好性差异明显。与轮回亲本 Nipponbare 相比,BPH12 和 BPH6 植物的 NIL 上 BPH 的生长和发育受到抑制,存活率较低。与 NIL-BPH12、NIL-BPH6 和 Nipponbare 相比,PYL-BPH6+BPH12 的种群增长率(PGR)分别降低了 46.4%、26.8%和 72.1%。此外,PYL-BPH6+BPH12 植物上的昆虫存活率最低。这些结果表明,聚合不同的 BPH 抗性基因对褐飞虱昆虫产生了更强的抗生性和抗菌作用。这种基因聚合策略对培育抗褐飞虱的粳稻品种将非常有益。