Soufi Motahare, Kamali-Asl Alireza, Geramifar Parham, Rahmim Arman
Department of Radiation Medicine Engineering, Shahid Beheshti University, Tehran, Iran.
Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
Mol Imaging Biol. 2017 Jun;19(3):456-468. doi: 10.1007/s11307-016-1015-0.
Determination of intra-tumor high-uptake area using 2-deoxy-2-[F]fluoro-D-glucose ([F]FDG) positron emission tomography (PET) imaging is an important consideration for dose painting in radiation treatment applications. The aim of our study was to develop a framework towards automated segmentation and labeling of homogeneous vs. heterogeneous tumors in clinical lung [F]FDG-PET with the capability of intra-tumor high-uptake region delineation.
We utilized and extended a fuzzy random walk PET tumor segmentation algorithm to delineate intra-tumor high-uptake areas. Tumor textural feature (TF) analysis was used to find a relationship between tumor type and TF values. Segmentation accuracy was evaluated quantitatively utilizing 70 clinical [F]FDG-PET lung images of patients with a total of 150 solid tumors. For volumetric analysis, the Dice similarity coefficient (DSC) and Hausdorff distance (HD) measures were extracted with respect to gold-standard manual segmentation. A multi-linear regression model was also proposed for automated tumor labeling based on TFs, including cross-validation analysis.
Two-tailed t test analysis of TFs between homogeneous and heterogeneous tumors revealed significant statistical difference for size-zone variability (SZV), intensity variability (IV), zone percentage (ZP), proposed parameters II and III, entropy and tumor volume (p < 0.001), dissimilarity, high intensity emphasis (HIE), and SUV (p < 0.01). Lower statistical differences were observed for proposed parameter I (p = 0.02), and no significant differences were observed for SUV and SUV. Furthermore, the Spearman rank analysis between visual tumor labeling and TF analysis depicted a significant correlation for SZV, IV, entropy, parameters II and III, and tumor volume (0.68 ≤ ρ ≤ 0.84) and moderate correlation for ZP, HIE, homogeneity, dissimilarity, parameter I, and SUV (0.22 ≤ ρ ≤ 0.52), while no correlations were observed for SUV and SUV (ρ < 0.08). The multi-linear regression model for automated tumor labeling process resulted in R and RMSE values of 0.93 and 0.14, respectively (p < 0.001), and generated tumor labeling sensitivity and specificity of 0.93 and 0.89. With respect to baseline random walk segmentation, the results showed significant (p < 0.001) mean DSC, HD, and SUV error improvements of 21.4 ± 11.5 %, 1.4 ± 0.8 mm, and 16.8 ± 8.1 % in homogeneous tumors and 7.4 ± 4.4 %, 1.5 ± 0.6 mm, and 7.9 ± 2.7 % in heterogeneous lesions. In addition, significant (p < 0.001) mean DSC, HD, and SUV error improvements were observed for tumor sub-volume delineations, namely 5 ± 2 %, 1.5 ± 0.6 mm, and 7 ± 3 % for the proposed Fuzzy RW method compared to RW segmentation.
We proposed and demonstrated an automatic framework for significantly improved segmentation and labeling of homogeneous vs. heterogeneous tumors in lung [F]FDG-PET images.
利用2-脱氧-2-[F]氟-D-葡萄糖([F]FDG)正电子发射断层扫描(PET)成像确定肿瘤内高摄取区域是放射治疗应用中剂量描绘的重要考量因素。我们研究的目的是开发一个框架,用于在临床肺部[F]FDG-PET中自动分割和标记均质与异质肿瘤,并具备描绘肿瘤内高摄取区域的能力。
我们利用并扩展了一种模糊随机游走PET肿瘤分割算法来描绘肿瘤内高摄取区域。肿瘤纹理特征(TF)分析用于寻找肿瘤类型与TF值之间的关系。利用70例患有总共150个实体瘤患者的临床[F]FDG-PET肺部图像对分割准确性进行定量评估。对于体积分析,相对于金标准手动分割提取了骰子相似系数(DSC)和豪斯多夫距离(HD)测量值。还基于TF提出了一个用于自动肿瘤标记的多线性回归模型,包括交叉验证分析。
对均质和异质肿瘤之间的TF进行双尾t检验分析显示,大小区域变异性(SZV)、强度变异性(IV)、区域百分比(ZP)、提出的参数II和III、熵和肿瘤体积(p < 0.001)、不相似性、高强度强调(HIE)和SUV(p < 0.01)存在显著统计学差异。对于提出的参数I观察到较低的统计学差异(p = 0.02),对于SUV和SUV未观察到显著差异。此外,视觉肿瘤标记与TF分析之间的斯皮尔曼等级分析显示,SZV、IV、熵、参数II和III以及肿瘤体积存在显著相关性(0.68≤ρ≤0.84),ZP、HIE、同质性、不相似性、参数I和SUV存在中度相关性(0.22≤ρ≤0.52),而对于SUV和SUV未观察到相关性(ρ < 0.08)。自动肿瘤标记过程的多线性回归模型产生的R和RMSE值分别为0.93和0.14(p < 0.001),并产生肿瘤标记敏感性和特异性分别为0.93和0.89。相对于基线随机游走分割,结果显示在均质肿瘤中,平均DSC、HD和SUV误差分别显著(p < 0.001)改善21.4±11.5%、1.4±0.8毫米和16.8±8.1%,在异质病变中分别改善7.4±4.4%、1.5±0.6毫米和7.9±2.7%。此外,对于肿瘤子体积描绘,与随机游走分割相比,所提出的模糊随机游走(Fuzzy RW)方法的平均DSC、HD和SUV误差分别显著(p < 0.001)改善5±2%、1.5±0.6毫米和7±3%。
我们提出并展示了一个自动框架,可显著改善肺部[F]FDG-PET图像中均质与异质肿瘤的分割和标记。