Suppr超能文献

具有协变量依赖删失的聚类数据的竞争风险回归

Competing risks regression for clustered data with covariate-dependent censoring.

作者信息

Khanal Manoj, Kim Soyoung, Fang Xi, Ahn Kwang Woo

机构信息

Division of Biostatistics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, 53226, Wisconsin,USA.

出版信息

Commun Stat Theory Methods. 2025;54(4):1081-1099. doi: 10.1080/03610926.2024.2329771. Epub 2024 Mar 31.

Abstract

Competing risks data in clinical trial or observational studies often suffer from cluster effects such as center effects and matched pairs design. The proportional subdistribution hazards (PSH) model is one of the most widely used methods for competing risks data analyses. However, the current literature on the PSH model for clustered competing risks data is limited to covariate-independent censoring and the unstratified model. In practice, competing risks data often face covariate-dependent censoring and have the non-PSH structure. Thus, we propose a marginal stratified PSH model with covariate-adjusted censoring weight for clustered competing risks data. We use a marginal stratified proportional hazards model to estimate the survival probability of censoring by taking clusters and non-proportional hazards structure into account. Our simulation results show that, in the presence of covariate-dependent censoring, the parameter estimates of the proposed method are unbiased with approximate 95% coverage rates. We apply the proposed method to stem cell transplant data of leukemia patients to evaluate the clinical implications of donor-recipient HLA matching on chronic graft-versus-host disease.

摘要

在临床试验或观察性研究中,竞争风险数据常常受到聚类效应的影响,如中心效应和配对设计。比例子分布风险(PSH)模型是竞争风险数据分析中使用最广泛的方法之一。然而,目前关于聚类竞争风险数据的PSH模型的文献仅限于协变量独立删失和未分层模型。在实际中,竞争风险数据常常面临协变量依赖删失且具有非PSH结构。因此,我们针对聚类竞争风险数据提出了一种具有协变量调整删失权重的边际分层PSH模型。我们使用边际分层比例风险模型,通过考虑聚类和非比例风险结构来估计删失的生存概率。我们的模拟结果表明,在存在协变量依赖删失的情况下,所提方法的参数估计是无偏的,覆盖率约为95%。我们将所提方法应用于白血病患者的干细胞移植数据,以评估供体 - 受体HLA匹配对慢性移植物抗宿主病的临床意义。

相似文献

1
Competing risks regression for clustered data with covariate-dependent censoring.具有协变量依赖删失的聚类数据的竞争风险回归
Commun Stat Theory Methods. 2025;54(4):1081-1099. doi: 10.1080/03610926.2024.2329771. Epub 2024 Mar 31.
3
Adjusted curves for clustered survival and competing risks data.聚类生存和竞争风险数据的调整曲线。
Commun Stat Simul Comput. 2025;54(1):120-143. doi: 10.1080/03610918.2023.2245583. Epub 2023 Aug 16.

引用本文的文献

1
Adjusted curves for clustered survival and competing risks data.聚类生存和竞争风险数据的调整曲线。
Commun Stat Simul Comput. 2025;54(1):120-143. doi: 10.1080/03610918.2023.2245583. Epub 2023 Aug 16.

本文引用的文献

1
Adjusted curves for clustered survival and competing risks data.聚类生存和竞争风险数据的调整曲线。
Commun Stat Simul Comput. 2025;54(1):120-143. doi: 10.1080/03610918.2023.2245583. Epub 2023 Aug 16.
2
Weighted NPMLE for the Subdistribution of a Competing Risk.竞争风险子分布的加权非参数最大似然估计
J Am Stat Assoc. 2019;114(525):259-270. doi: 10.1080/01621459.2017.1401540. Epub 2018 Jul 9.
7
Competing risks regression for clustered data. 群组数据的竞争风险回归。
Biostatistics. 2012 Jul;13(3):371-83. doi: 10.1093/biostatistics/kxr032. Epub 2011 Oct 31.
8
Competing risks regression for stratified data.分层数据的竞争风险回归
Biometrics. 2011 Jun;67(2):661-70. doi: 10.1111/j.1541-0420.2010.01493.x. Epub 2010 Dec 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验