Suppr超能文献

关于生存结局的因果中介分析

On causal mediation analysis with a survival outcome.

作者信息

Tchetgen Tchetgen Eric J

机构信息

Harvard University, USA.

出版信息

Int J Biostat. 2011;7(1):Article 33. doi: 10.2202/1557-4679.1351. Epub 2011 Sep 2.

Abstract

Suppose that having established a marginal total effect of a point exposure on a time-to-event outcome, an investigator wishes to decompose this effect into its direct and indirect pathways, also known as natural direct and indirect effects, mediated by a variable known to occur after the exposure and prior to the outcome. This paper proposes a theory of estimation of natural direct and indirect effects in two important semiparametric models for a failure time outcome. The underlying survival model for the marginal total effect and thus for the direct and indirect effects, can either be a marginal structural Cox proportional hazards model, or a marginal structural additive hazards model. The proposed theory delivers new estimators for mediation analysis in each of these models, with appealing robustness properties. Specifically, in order to guarantee ignorability with respect to the exposure and mediator variables, the approach, which is multiply robust, allows the investigator to use several flexible working models to adjust for confounding by a large number of pre-exposure variables. Multiple robustness is appealing because it only requires a subset of working models to be correct for consistency; furthermore, the analyst need not know which subset of working models is in fact correct to report valid inferences. Finally, a novel semiparametric sensitivity analysis technique is developed for each of these models, to assess the impact on inference, of a violation of the assumption of ignorability of the mediator.

摘要

假设在确定了点暴露对事件发生时间结局的边际总效应后,研究者希望将此效应分解为其直接和间接路径,即所谓的自然直接效应和间接效应,这些效应由暴露后且结局前出现的一个变量介导。本文针对失效时间结局的两个重要半参数模型提出了自然直接效应和间接效应的估计理论。边际总效应以及直接和间接效应的基础生存模型可以是边际结构Cox比例风险模型,也可以是边际结构相加风险模型。所提出的理论为这些模型中的每一个提供了用于中介分析的新估计量,具有吸引人的稳健性。具体而言,为了保证相对于暴露和中介变量的可忽略性,这种多重稳健的方法允许研究者使用几个灵活的工作模型来调整大量暴露前变量的混杂情况。多重稳健性很有吸引力,因为它只要求工作模型的一个子集正确就能保证一致性;此外,分析师无需知道工作模型的哪个子集实际上是正确的就能报告有效的推断。最后,针对这些模型中的每一个开发了一种新颖的半参数敏感性分析技术,以评估违反中介变量可忽略性假设对推断的影响。

相似文献

1
On causal mediation analysis with a survival outcome.
Int J Biostat. 2011;7(1):Article 33. doi: 10.2202/1557-4679.1351. Epub 2011 Sep 2.
3
Inverse odds ratio-weighted estimation for causal mediation analysis.
Stat Med. 2013 Nov 20;32(26):4567-80. doi: 10.1002/sim.5864. Epub 2013 Jun 7.
4
Estimation of a Semiparametric Natural Direct Effect Model Incorporating Baseline Covariates.
Biometrika. 2014 Dec;101(4):849-864. doi: 10.1093/biomet/asu044.
5
Multiply robust estimation of natural indirect effects with multiple ordered mediators.
Stat Med. 2024 Feb 20;43(4):656-673. doi: 10.1002/sim.9977. Epub 2023 Dec 11.
6
Causal Mediation Analysis for the Cox Proportional Hazards Model with a Smooth Baseline Hazard Estimator.
J R Stat Soc Ser C Appl Stat. 2017 Aug;66(4):741-757. doi: 10.1111/rssc.12188. Epub 2016 Oct 19.
7
Causal mediation analysis with a latent mediator.
Biom J. 2016 May;58(3):535-48. doi: 10.1002/bimj.201400124. Epub 2015 Sep 13.
8
Causal mediation analysis on failure time outcome without sequential ignorability.
Lifetime Data Anal. 2017 Oct;23(4):533-559. doi: 10.1007/s10985-016-9377-9. Epub 2016 Jul 27.
9
Causal mediation analysis with sure outcomes of random events model.
Stat Med. 2021 Jul 30;40(17):3975-3989. doi: 10.1002/sim.9009. Epub 2021 Apr 26.
10
Estimation of separable direct and indirect effects in a continuous-time illness-death model.
Lifetime Data Anal. 2024 Jan;30(1):143-180. doi: 10.1007/s10985-023-09601-y. Epub 2023 Jun 4.

引用本文的文献

2
Practical challenges in mediation analysis: a guide for applied researchers.
Health Serv Outcomes Res Methodol. 2025;25(1):57-84. doi: 10.1007/s10742-024-00327-4. Epub 2024 Apr 12.
3
Mediation Analysis with Multiple Exposures and Multiple Mediators.
Stat Med. 2024 Nov 10;43(25):4887-4898. doi: 10.1002/sim.10215. Epub 2024 Sep 9.
4
On Partial Identification of the Natural Indirect Effect.
J Causal Inference. 2017 Sep;5(2). doi: 10.1515/jci-2016-0004. Epub 2017 Feb 28.
5
Methods for the Analysis of Multiple Epigenomic Mediators in Environmental Epidemiology.
Curr Environ Health Rep. 2024 Jun;11(2):109-117. doi: 10.1007/s40572-024-00436-9. Epub 2024 Feb 22.
6
Causal inference with a mediated proportional hazards regression model.
Commun Stat Simul Comput. 2024;53(1):203-218. doi: 10.1080/03610918.2021.2014887. Epub 2021 Dec 20.
8
A multiple-testing procedure for high-dimensional mediation hypotheses.
J Am Stat Assoc. 2022;117(537):198-213. doi: 10.1080/01621459.2020.1765785. Epub 2020 Jun 24.
10
Mediation model with a categorical exposure and a censored mediator with application to a genetic study.
PLoS One. 2021 Oct 12;16(10):e0257628. doi: 10.1371/journal.pone.0257628. eCollection 2021.

本文引用的文献

2
The causal mediation formula--a guide to the assessment of pathways and mechanisms.
Prev Sci. 2012 Aug;13(4):426-36. doi: 10.1007/s11121-011-0270-1.
3
A general approach to causal mediation analysis.
Psychol Methods. 2010 Dec;15(4):309-34. doi: 10.1037/a0020761.
4
Bias formulas for sensitivity analysis for direct and indirect effects.
Epidemiology. 2010 Jul;21(4):540-51. doi: 10.1097/EDE.0b013e3181df191c.
5
Marginal structural models for the estimation of direct and indirect effects.
Epidemiology. 2009 Jan;20(1):18-26. doi: 10.1097/EDE.0b013e31818f69ce.
6
Doubly robust estimation in missing data and causal inference models.
Biometrics. 2005 Dec;61(4):962-73. doi: 10.1111/j.1541-0420.2005.00377.x.
7
Identifiability and exchangeability for direct and indirect effects.
Epidemiology. 1992 Mar;3(2):143-55. doi: 10.1097/00001648-199203000-00013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验