Yu Yiding, Yuan Huajing, Han Quancheng, Shi Jingle, Liu Xiujuan, Xue Yitao, Li Yan
Shandong University of Traditional Chinese Medicine, Jinan, China.
Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
Front Cardiovasc Med. 2024 Dec 9;11:1406662. doi: 10.3389/fcvm.2024.1406662. eCollection 2024.
Venous congestion (VC) sets in weeks before visible clinical decompensation, progressively increasing cardiac strain and leading to acute heart failure (HF) decompensation. Currently, the field lacks a universally acknowledged gold standard and early detection methods for VC.
Using data from the GEO database, we identified VC's impact on HF through key genes using Limma and STRING databases. The potential mechanisms of HF exacerbation were explored via GO and KEGG enrichment analyses. Diagnostic genes for acute decompensated HF were discovered using LASSO, RF, and SVM-REF machine learning algorithms, complemented by single-gene GSEA analysis. A nomogram tool was developed for the diagnostic model's evaluation and application, with validation conducted on external datasets.
Our findings reveal that VC influences 37 genes impacting HF via 8 genes, primarily affecting oxygen transport, binding, and extracellular matrix stability. Four diagnostic genes for HF's pre-decompensation phase were identified: SMOC2, OGN, FCN3, and SERPINA3. These genes showed high diagnostic potential, with AUCs for each gene exceeding 0.9 and a genomic AUC of 0.942.
Our study identifies four critical diagnostic genes for HF's pre-decompensated phase using bioinformatics and machine learning, shedding light on the molecular mechanisms through which VC worsens HF. It offers a novel approach for clinical evaluation of acute decompensated HF patient congestion status, presenting fresh insights into its pathogenesis, diagnosis, and treatment.
静脉充血(VC)在临床失代偿可见之前数周就已出现,逐渐增加心脏负荷并导致急性心力衰竭(HF)失代偿。目前,该领域缺乏针对VC的普遍认可的金标准和早期检测方法。
利用基因表达综合数据库(GEO数据库)的数据,我们通过使用Limma和STRING数据库中的关键基因确定了VC对HF的影响。通过基因本体论(GO)和京都基因与基因组百科全书(KEGG)富集分析探索了HF恶化的潜在机制。使用套索回归(LASSO)、随机森林(RF)和支持向量机递归特征消除(SVM-REF)机器学习算法发现急性失代偿性HF的诊断基因,并辅以单基因基因集富集分析(GSEA)。开发了一种列线图工具用于评估和应用诊断模型,并在外部数据集上进行了验证。
我们的研究结果表明,VC通过8个基因影响37个与HF相关的基因,主要影响氧运输、结合以及细胞外基质稳定性。确定了HF失代偿前期的四个诊断基因:分泌型形态发生素相关蛋白2(SMOC2)、骨钙素(OGN)、甘露糖结合凝集素3(FCN3)和丝氨酸蛋白酶抑制剂A3(SERPINA3)。这些基因显示出较高的诊断潜力,每个基因的曲线下面积(AUC)均超过0.9,基因组AUC为0.942。
我们的研究利用生物信息学和机器学习确定了HF失代偿前期的四个关键诊断基因,揭示了VC使HF恶化的分子机制。它为急性失代偿性HF患者充血状态的临床评估提供了一种新方法,为其发病机制、诊断和治疗提供了新的见解。