Departamento de Anatomía Histología y Neurociencia, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz Madrid, Spain.
Front Neurol. 2011 Nov 15;2:70. doi: 10.3389/fneur.2011.00070. eCollection 2011.
The state of non-REM sleep (NREM), or slow wave sleep, is associated with a synchronized EEG pattern in which sleep spindles and/or K complexes and high-voltage slow wave activity (SWA) can be recorded over the entire cortical surface. In humans, NREM is subdivided into stages 2 and 3-4 (presently named N3) depending on the proportions of each of these polygraphic events. NREM is necessary for normal physical and intellectual performance and behavior. An overview of the brain structures involved in NREM generation shows that the thalamus and the cerebral cortex are absolutely necessary for the most significant bioelectric and behavioral events of NREM to be expressed; other structures like the basal forebrain, anterior hypothalamus, cerebellum, caudal brain stem, spinal cord and peripheral nerves contribute to NREM regulation and modulation. In NREM stage 2, sustained hyperpolarized membrane potential levels resulting from interaction between thalamic reticular and projection neurons gives rise to spindle oscillations in the membrane potential; the initiation and termination of individual spindle sequences depends on corticothalamic activities. Cortical and thalamic mechanisms are also involved in the generation of EEG delta SWA that appears in deep stage 3-4 (N3) NREM; the cortex has classically been considered to be the structure that generates this activity, but delta oscillations can also be generated in thalamocortical neurons. NREM is probably necessary to normalize synapses to a sustainable basal condition that can ensure cellular homeostasis. Sleep homeostasis depends not only on the duration of prior wakefulness but also on its intensity, and sleep need increases when wakefulness is associated with learning. NREM seems to ensure cell homeostasis by reducing the number of synaptic connections to a basic level; based on simple energy demands, cerebral energy economizing during NREM sleep is one of the prevalent hypotheses to explain NREM homeostasis.
非快速眼动睡眠(NREM)或慢波睡眠状态与同步脑电图模式相关,在此模式中,睡眠纺锤波和/或 K 复合波和高电压慢波活动(SWA)可在整个皮质表面记录到。在人类中,NREM 根据这些多导睡眠图事件的每个事件的比例分为 2 期和 3-4 期(目前命名为 N3)。NREM 对于正常的身体和智力表现和行为是必要的。对涉及 NREM 产生的脑结构的概述表明,丘脑和大脑皮层对于 NREM 最显著的生物电和行为事件的表达是绝对必要的;其他结构,如基底前脑、下丘脑前部、小脑、脑桥尾部、脊髓和周围神经,有助于 NREM 的调节和调制。在 NREM 2 期,丘脑网状核和投射神经元之间的相互作用导致膜电位中的纺锤波振荡,持续的超极化膜电位水平;单个纺锤序列的起始和终止取决于皮质丘脑活动。皮质和丘脑机制也参与脑电图 delta SWA 的产生,这种 delta SWA 出现在深度 3-4 期(N3)NREM 中;皮质经典上被认为是产生这种活动的结构,但 delta 振荡也可以在丘脑皮质神经元中产生。NREM 可能需要将突触正常化为可持续的基础状态,以确保细胞内稳态。睡眠内稳态不仅取决于先前清醒的持续时间,还取决于其强度,当清醒与学习相关时,睡眠需求会增加。NREM 通过将突触连接的数量减少到基本水平来确保细胞内稳态;根据简单的能量需求,在 NREM 睡眠期间大脑节约能量是解释 NREM 内稳态的流行假说之一。