Department of Electrical Engineering, Stanford University, 117 Encina Commons, Stanford, CA 94035-6019, USA.
Math Biosci. 2012 Feb;235(2):138-47. doi: 10.1016/j.mbs.2011.11.006. Epub 2011 Nov 16.
The structure of the contact network through which a disease spreads may influence the optimal use of resources for epidemic control. In this work, we explore how to minimize the spread of infection via quarantining with limited resources. In particular, we examine which links should be removed from the contact network, given a constraint on the number of removable links, such that the number of nodes which are no longer at risk for infection is maximized. We show how this problem can be posed as a non-convex quadratically constrained quadratic program (QCQP), and we use this formulation to derive a link removal algorithm. The performance of our QCQP-based algorithm is validated on small Erdős-Renyi and small-world random graphs, and then tested on larger, more realistic networks, including a real-world network of injection drug use. We show that our approach achieves near optimal performance and out-performs other intuitive link removal algorithms, such as removing links in order of edge centrality.
疾病传播的接触网络结构可能会影响传染病控制资源的最佳利用。在这项工作中,我们探讨了如何通过有限资源的隔离来最大限度地减少感染的传播。具体来说,我们研究了在给定可移除链接数量的约束下,应该从接触网络中移除哪些链接,以最大限度地增加不再面临感染风险的节点数量。我们展示了如何将这个问题表述为一个非凸二次约束二次规划 (QCQP),并使用这种形式化方法来推导出一个链接移除算法。我们的基于 QCQP 的算法在小型 Erdos-Renyi 和小世界随机图上进行了验证,然后在更大、更现实的网络上进行了测试,包括一个现实世界的注射毒品使用网络。我们表明,我们的方法可以达到接近最优的性能,并优于其他直观的链接移除算法,例如按照边中心性的顺序移除链接。