Suppr超能文献

通过最优接触适应缓解接触网络中的流行病。

Mitigation of epidemics in contact networks through optimal contact adaptation.

机构信息

K-State Epicenter, Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506-5204, United States.

出版信息

Math Biosci Eng. 2013 Aug;10(4):1227-51. doi: 10.3934/mbe.2013.10.1227.

Abstract

This paper presents an optimal control problem formulation to minimize the total number of infection cases during the spread of susceptible-infected-recovered SIR epidemics in contact networks. In the new approach, contact weighted are reduced among nodes and a global minimum contact level is preserved in the network. In addition, the infection cost and the cost associated with the contact reduction are linearly combined in a single objective function. Hence, the optimal control formulation addresses the tradeoff between minimization of total infection cases and minimization of contact weights reduction. Using Pontryagin theorem, the obtained solution is a unique candidate representing the dynamical weighted contact network. To find the near-optimal solution in a decentralized way, we propose two heuristics based on Bang-Bang control function and on a piecewise nonlinear control function, respectively. We perform extensive simulations to evaluate the two heuristics on different networks. Our results show that the piecewise nonlinear control function outperforms the well-known Bang-Bang control function in minimizing both the total number of infection cases and the reduction of contact weights. Finally, our results show awareness of the infection level at which the mitigation strategies are effectively applied to the contact weights.

摘要

本文提出了一种最优控制问题的公式化方法,以最小化易感染-感染-恢复 SIR 传染病在接触网络中传播过程中的总感染病例数。在新方法中,节点之间的接触权重被降低,并且网络中保持了全局最小接触水平。此外,感染成本和与接触减少相关的成本在单个目标函数中线性组合。因此,最优控制公式解决了总感染病例数最小化和接触权重减少最小化之间的权衡问题。使用庞特里亚金定理,得到的解是表示动态加权接触网络的唯一候选解。为了以分散的方式找到近似最优解,我们分别基于 Bang-Bang 控制函数和分段非线性控制函数提出了两种启发式方法。我们在不同的网络上进行了广泛的模拟,以评估这两种启发式方法。我们的结果表明,分段非线性控制函数在最小化总感染病例数和接触权重减少方面优于著名的 Bang-Bang 控制函数。最后,我们的结果表明,人们意识到感染水平,从而有效地将缓解策略应用于接触权重。

相似文献

2
Epidemic spreading on contact networks with adaptive weights.具有自适应权重的接触网络上的传染病传播。
J Theor Biol. 2013 Jan 21;317:133-9. doi: 10.1016/j.jtbi.2012.09.036. Epub 2012 Oct 9.
6
A biologically inspired immunization strategy for network epidemiology.一种受生物启发的网络流行病学免疫策略。
J Theor Biol. 2016 Jul 7;400:92-102. doi: 10.1016/j.jtbi.2016.04.018. Epub 2016 Apr 22.
9
Optimal treatment of an SIR epidemic model with time delay.具有时滞的SIR传染病模型的最优治疗
Biosystems. 2009 Oct;98(1):43-50. doi: 10.1016/j.biosystems.2009.05.006. Epub 2009 May 21.

本文引用的文献

4
Resource allocation for epidemic control in metapopulations.流行种群的传染病控制资源分配。
PLoS One. 2011;6(9):e24577. doi: 10.1371/journal.pone.0024577. Epub 2011 Sep 13.
7
An individual-based approach to SIR epidemics in contact networks.基于个体的接触网络中 SIR 传染病模型
J Theor Biol. 2011 Aug 21;283(1):136-44. doi: 10.1016/j.jtbi.2011.05.029. Epub 2011 Jun 6.
8
An SIS patch model with variable transmission coefficients.一个具有可变传输系数的 SIS 斑块模型。
Math Biosci. 2011 Aug;232(2):110-5. doi: 10.1016/j.mbs.2011.05.001. Epub 2011 May 18.
9
Adaptive human behavior in epidemiological models.流行病学模型中的适应性人类行为。
Proc Natl Acad Sci U S A. 2011 Apr 12;108(15):6306-11. doi: 10.1073/pnas.1011250108. Epub 2011 Mar 28.
10
Quarantine-generated phase transition in epidemic spreading.疫情传播中隔离引发的相变
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Feb;83(2 Pt 2):026102. doi: 10.1103/PhysRevE.83.026102. Epub 2011 Feb 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验