Suppr超能文献

缺氧状态下的mTOR活性

mTOR activity under hypoxia.

作者信息

Vadysirisack Douangsone D, Ellisen Leif W

机构信息

Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA.

出版信息

Methods Mol Biol. 2012;821:45-58. doi: 10.1007/978-1-61779-430-8_4.

Abstract

The adaptive response to hypoxia, low oxygen tension, involves inhibition of energy-intensive cellular processes including protein translation. This effect is mediated in part through a decrease in the kinase activity of mammalian target of rapamycin complex 1 (mTORC1), a master regulator of protein translation. The principle mechanism for hypoxia-induced mTORC1 inhibition, however, was not elucidated until recently. Our work has demonstrated that the stress-induced protein REDD1 is essential for hypoxia regulation of mTORC1 activity and has further defined the molecular mechanism whereby REDD1 represses mTORC1 activity under hypoxic stress. Using our studies with REDD1 as an example, we describe in detail biochemical approaches to assess mTORC1 activity in the hypoxic response. Here, we provide methodologies to monitor signaling components both downstream and upstream of the hypoxia-induced mTORC1 inhibitory pathway. These methodologies will serve as valuable tools for researchers seeking to understand mTORC1 dysregulation in the context of hypoxic stress.

摘要

对缺氧(低氧张力)的适应性反应涉及抑制包括蛋白质翻译在内的能量密集型细胞过程。这种效应部分是通过降低雷帕霉素复合物1(mTORC1)的激酶活性介导的,mTORC1是蛋白质翻译的主要调节因子。然而,低氧诱导的mTORC1抑制的主要机制直到最近才得以阐明。我们的研究表明,应激诱导蛋白REDD1对于低氧对mTORC1活性的调节至关重要,并进一步确定了REDD1在低氧应激下抑制mTORC1活性的分子机制。以我们对REDD1的研究为例,我们详细描述了评估低氧反应中mTORC1活性的生化方法。在这里,我们提供了监测低氧诱导的mTORC1抑制途径上下游信号成分的方法。这些方法将成为寻求了解低氧应激背景下mTORC1失调的研究人员的宝贵工具。

相似文献

1
mTOR activity under hypoxia.
Methods Mol Biol. 2012;821:45-58. doi: 10.1007/978-1-61779-430-8_4.
2
Cell-type-dependent regulation of mTORC1 by REDD1 and the tumor suppressors TSC1/TSC2 and LKB1 in response to hypoxia.
Mol Cell Biol. 2011 May;31(9):1870-84. doi: 10.1128/MCB.01393-10. Epub 2011 Mar 7.
4
mTORC1 signaling under hypoxic conditions is controlled by ATM-dependent phosphorylation of HIF-1α.
Mol Cell. 2010 Nov 24;40(4):509-20. doi: 10.1016/j.molcel.2010.10.030.
6
Post-translational regulation of mTOR complex 1 in hypoxia and reoxygenation.
Cell Signal. 2013 May;25(5):1235-44. doi: 10.1016/j.cellsig.2013.02.012. Epub 2013 Feb 15.
7
mTORC1 dependent regulation of REDD1 protein stability.
PLoS One. 2013 May 22;8(5):e63970. doi: 10.1371/journal.pone.0063970. Print 2013.
8
Hypoxia Increases IGFBP-1 Phosphorylation Mediated by mTOR Inhibition.
Mol Endocrinol. 2016 Feb;30(2):201-16. doi: 10.1210/me.2015-1194. Epub 2015 Dec 29.
9
Regulation of mammalian target of rapamycin complex 1 (mTORC1) by hypoxia: causes and consequences.
Target Oncol. 2011 Jun;6(2):95-102. doi: 10.1007/s11523-011-0173-x. Epub 2011 Apr 16.
10
Feedback control of p53 translation by REDD1 and mTORC1 limits the p53-dependent DNA damage response.
Mol Cell Biol. 2011 Nov;31(21):4356-65. doi: 10.1128/MCB.05541-11. Epub 2011 Sep 6.

引用本文的文献

1
HIF1α controls steroidogenesis under acute hypoxic stress.
Cell Commun Signal. 2025 Feb 13;23(1):86. doi: 10.1186/s12964-025-02080-8.
2
SARS-CoV-2 viral protein Nsp2 stimulates translation under normal and hypoxic conditions.
Virol J. 2023 Mar 30;20(1):55. doi: 10.1186/s12985-023-02021-2.
5
Hypoxia and the integrated stress response promote pulmonary hypertension and preeclampsia: Implications in drug development.
Drug Discov Today. 2021 Nov;26(11):2754-2773. doi: 10.1016/j.drudis.2021.07.011. Epub 2021 Jul 22.
6
Alda-1 Attenuates Hyperoxia-Induced Acute Lung Injury in Mice.
Front Pharmacol. 2021 Jan 8;11:597942. doi: 10.3389/fphar.2020.597942. eCollection 2020.
7
mTOR Signaling as a Regulator of Hematopoietic Stem Cell Fate.
Stem Cell Rev Rep. 2021 Aug;17(4):1312-1322. doi: 10.1007/s12015-021-10131-z. Epub 2021 Feb 14.
8
Mammalian Mitophagosome Formation: A Focus on the Early Signals and Steps.
Front Cell Dev Biol. 2020 Mar 18;8:171. doi: 10.3389/fcell.2020.00171. eCollection 2020.
9
mRNA-to-protein translation in hypoxia.
Mol Cancer. 2019 Mar 30;18(1):49. doi: 10.1186/s12943-019-0968-4.
10
Role of HIF1 Regulatory Factors in Stem Cells.
Int J Stem Cells. 2019 Mar 30;12(1):8-20. doi: 10.15283/ijsc18109.

本文引用的文献

1
Mammalian target of rapamycin (mTOR): conducting the cellular signaling symphony.
J Biol Chem. 2010 May 7;285(19):14071-7. doi: 10.1074/jbc.R109.094003. Epub 2010 Mar 15.
2
Molecular mechanisms of mTOR-mediated translational control.
Nat Rev Mol Cell Biol. 2009 May;10(5):307-18. doi: 10.1038/nrm2672. Epub 2009 Apr 2.
5
Defining the role of mTOR in cancer.
Cancer Cell. 2007 Jul;12(1):9-22. doi: 10.1016/j.ccr.2007.05.008.
6
mTOR, translation initiation and cancer.
Oncogene. 2006 Oct 16;25(48):6416-22. doi: 10.1038/sj.onc.1209888.
8
Activity of TSC2 is inhibited by AKT-mediated phosphorylation and membrane partitioning.
J Cell Biol. 2006 Apr 24;173(2):279-89. doi: 10.1083/jcb.200507119.
9
Hypoxia-induced energy stress regulates mRNA translation and cell growth.
Mol Cell. 2006 Feb 17;21(4):521-31. doi: 10.1016/j.molcel.2006.01.010.
10
Gene expression during acute and prolonged hypoxia is regulated by distinct mechanisms of translational control.
EMBO J. 2006 Mar 8;25(5):1114-25. doi: 10.1038/sj.emboj.7600998. Epub 2006 Feb 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验