Suppr超能文献

将连锁信息纳入常见疾病/罕见变异框架中。

Incorporating linkage information into a common disease/rare variant framework.

机构信息

Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA.

出版信息

Genet Epidemiol. 2011;35 Suppl 1(0 1):S74-9. doi: 10.1002/gepi.20654.

Abstract

Recent developments in sequencing technology have allowed the investigation of the common disease/rare variant hypothesis. In the Genetic Analysis Workshop 17 data set, we have sequence data on both unrelated individuals and eight large extended pedigrees with simulated quantitative and qualitative phenotypes. Group 11, whose focus was incorporating linkage information, considered several different ways to use the extended pedigrees to identify causal genes and variants. The first issue was the use of standard linkage or identity-by-descent information to identify regions containing causal rare variants. We found that rare variants of large effect segregating through pedigrees were precisely the bailiwick of linkage analysis. For a common disease, we anticipate many risk loci, so a heterogeneity linkage analysis or an analysis of a single pedigree at a time may be useful. The second issue was using pedigree data to identify individuals for sequencing. If one can identify linked regions and even carriers of risk haplotypes, the sequencing will be substantially more efficient. In fact, sequencing only 2.5% of the genome in carefully selected individuals can detect 52% of the risk variants that would be detected through whole-exome sequencing in a large number of unrelated individuals. Finally, we found that linkage information from pedigrees can provide weights for case-control association tests. We also found that pedigree-based association tests have the same issues of binning variants and variant counting as those in tests of unrelated individuals. Clearly, when pedigrees are available, they can provide great assistance in the search for rare variants that influence common disorders.

摘要

测序技术的最新进展使得对常见疾病/稀有变异假说的研究成为可能。在遗传分析研讨会 17 数据集,我们既有无关个体的序列数据,也有 8 个带有模拟定量和定性表型的大型扩展家系的序列数据。第 11 组的重点是整合连锁信息,他们考虑了几种不同的方法来利用大型家系识别因果基因和变异。第一个问题是使用标准连锁或同源性来识别包含因果稀有变异的区域。我们发现,通过家系分离的大效应稀有变异正是连锁分析的管辖范围。对于一种常见疾病,我们预计会有许多风险位点,因此进行异质性连锁分析或逐个分析单个家系可能会很有用。第二个问题是使用家系数据识别需要测序的个体。如果能够识别连锁区域甚至风险单倍型携带者,测序将大大提高效率。实际上,在精心挑选的个体中只对基因组的 2.5%进行测序,就可以检测到在大量无关个体中通过全外显子组测序检测到的 52%的风险变异。最后,我们发现家系的连锁信息可以为病例对照关联测试提供权重。我们还发现,基于家系的关联测试与对无关个体的测试一样,存在着对变异进行分组和计数的问题。显然,当家系可用时,它们可以极大地帮助寻找影响常见疾病的稀有变异。

相似文献

1
Incorporating linkage information into a common disease/rare variant framework.
Genet Epidemiol. 2011;35 Suppl 1(0 1):S74-9. doi: 10.1002/gepi.20654.
2
Deciphering the genetic architecture and ethnographic distribution of IRD in three ethnic populations by whole genome sequence analysis.
PLoS Genet. 2021 Oct 18;17(10):e1009848. doi: 10.1371/journal.pgen.1009848. eCollection 2021 Oct.
4
Enriching rare variants using family-specific linkage information.
BMC Proc. 2011 Nov 29;5 Suppl 9(Suppl 9):S82. doi: 10.1186/1753-6561-5-S9-S82.
6
Population-based and family-based designs to analyze rare variants in complex diseases.
Genet Epidemiol. 2011;35 Suppl 1(Suppl 1):S41-7. doi: 10.1002/gepi.20648.
7
8
Power of family-based association designs to detect rare variants in large pedigrees using imputed genotypes.
Genet Epidemiol. 2014 Jan;38(1):1-9. doi: 10.1002/gepi.21776. Epub 2013 Nov 15.
10
Detection of rare disease variants in extended pedigrees using RVS.
Bioinformatics. 2019 Jul 15;35(14):2509-2511. doi: 10.1093/bioinformatics/bty976.

引用本文的文献

1
Genomics in medicine: A new era in medicine.
World J Methodol. 2021 Sep 20;11(5):231-242. doi: 10.5662/wjm.v11.i5.231.
2
Genomic Predictors of Asthma Phenotypes and Treatment Response.
Front Pediatr. 2019 Feb 5;7:6. doi: 10.3389/fped.2019.00006. eCollection 2019.
3
Rediscovering the value of families for psychiatric genetics research.
Mol Psychiatry. 2019 Apr;24(4):523-535. doi: 10.1038/s41380-018-0073-x. Epub 2018 Jun 28.
4
Family-based approaches: design, imputation, analysis, and beyond.
BMC Genet. 2016 Feb 3;17 Suppl 2(Suppl 2):9. doi: 10.1186/s12863-015-0318-5.
5
PBAP: a pipeline for file processing and quality control of pedigree data with dense genetic markers.
Bioinformatics. 2015 Dec 1;31(23):3790-8. doi: 10.1093/bioinformatics/btv444. Epub 2015 Jul 30.
6
Power of family-based association designs to detect rare variants in large pedigrees using imputed genotypes.
Genet Epidemiol. 2014 Jan;38(1):1-9. doi: 10.1002/gepi.21776. Epub 2013 Nov 15.
7
Identification of rare variants from exome sequence in a large pedigree with autism.
Hum Hered. 2012;74(3-4):153-64. doi: 10.1159/000346560. Epub 2013 Apr 11.
8
Linkage analysis identifies a locus for plasma von Willebrand factor undetected by genome-wide association.
Proc Natl Acad Sci U S A. 2013 Jan 8;110(2):588-93. doi: 10.1073/pnas.1219885110. Epub 2012 Dec 24.
9
Genetic heterogeneity in Finnish hereditary prostate cancer using ordered subset analysis.
Eur J Hum Genet. 2013 Apr;21(4):437-43. doi: 10.1038/ejhg.2012.185. Epub 2012 Sep 5.

本文引用的文献

3
Enriching rare variants using family-specific linkage information.
BMC Proc. 2011 Nov 29;5 Suppl 9(Suppl 9):S82. doi: 10.1186/1753-6561-5-S9-S82.
4
5
A novel method to detect rare variants using both family and unrelated case-control data.
BMC Proc. 2011 Nov 29;5 Suppl 9(Suppl 9):S80. doi: 10.1186/1753-6561-5-S9-S80.
6
Using linkage analysis of large pedigrees to guide association analyses.
BMC Proc. 2011 Nov 29;5 Suppl 9(Suppl 9):S79. doi: 10.1186/1753-6561-5-S9-S79.
8
Strategies for selection of subjects for sequencing after detection of a linkage peak.
BMC Proc. 2011 Nov 29;5 Suppl 9(Suppl 9):S77. doi: 10.1186/1753-6561-5-S9-S77. eCollection 2011.
10
A groupwise association test for rare mutations using a weighted sum statistic.
PLoS Genet. 2009 Feb;5(2):e1000384. doi: 10.1371/journal.pgen.1000384. Epub 2009 Feb 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验