Suppr超能文献

关于不寻常的硫醇-二硫键氧化还原酶的结构和机制见解。

Structural and mechanistic insights into unusual thiol disulfide oxidoreductase.

机构信息

IMR, IFR88, CNRS, Aix-Marseille Université, Marseille 13402, France.

出版信息

J Biol Chem. 2012 Jan 13;287(3):1688-97. doi: 10.1074/jbc.M111.288316. Epub 2011 Nov 28.

Abstract

Cytoplasmic desulfothioredoxin (Dtrx) from the anaerobe Desulfovibrio vulgaris Hildenborough has been identified as a new member of the thiol disulfide oxidoreductase family. The active site of Dtrx contains a particular consensus sequence, CPHC, never seen in the cytoplasmic thioredoxins and generally found in periplasmic oxidases. Unlike canonical thioredoxins (Trx), Dtrx does not present any disulfide reductase activity, but it presents instead an unusual disulfide isomerase activity. We have used NMR spectroscopy to gain insights into the structure and the catalytic mechanism of this unusual Dtrx. The redox potential of Dtrx (-181 mV) is significantly less reducing than that of canonical Trx. A pH dependence study allowed the determination of the pK(a) of all protonable residues, including the cysteine and histidine residues. Thus, the pK(a) values for the thiol group of Cys(31) and Cys(34) are 4.8 and 11.3, respectively. The His(33) pK(a) value, experimentally determined for the first time, differs notably as a function of the redox states, 7.2 for the reduced state and 4.6 for the oxidized state. These data suggest an important role for His(33) in the molecular mechanism of Dtrx catalysis that is confirmed by the properties of mutant DtrxH33G protein. The NMR structure of Dtrx shows a different charge repartition compared with canonical Trx. The results presented are likely indicative of the involvement of this protein in the catalysis of substrates specific of the anaerobe cytoplasm of DvH. The study of Dtrx is an important step toward revealing the molecular details of the thiol-disulfide oxidoreductase catalytic mechanism.

摘要

来自厌氧脱硫弧菌 Hildenborough 的细胞质脱硫硫氧还蛋白 (Dtrx) 已被鉴定为硫氧还蛋白家族中的新成员。Dtrx 的活性位点包含一个特定的共有序列 CPHC,从未在细胞质硫氧还蛋白中见到过,通常在周质氧化酶中发现。与典型的硫氧还蛋白 (Trx) 不同,Dtrx 没有任何二硫键还原酶活性,但它具有不寻常的二硫键异构酶活性。我们使用 NMR 光谱技术深入了解这种不寻常的 Dtrx 的结构和催化机制。Dtrx 的氧化还原电位 (-181 mV) 比典型的 Trx 显著更还原。pH 值依赖性研究允许确定所有可质子化残基的 pK(a) 值,包括半胱氨酸和组氨酸残基。因此,Cys(31)和 Cys(34)的巯基的 pK(a) 值分别为 4.8 和 11.3。His(33)的 pK(a) 值是首次通过实验确定的,它显著地随氧化还原状态而变化,在还原状态下为 7.2,在氧化状态下为 4.6。这些数据表明 His(33)在 Dtrx 催化的分子机制中起重要作用,这一点通过 DtrxH33G 突变蛋白的性质得到证实。Dtrx 的 NMR 结构显示与典型的 Trx 相比具有不同的电荷分布。提出的结果可能表明该蛋白参与了 DvH 厌氧细胞质中特定底物的催化。对 Dtrx 的研究是揭示硫醇-二硫键氧化还原酶催化机制的分子细节的重要步骤。

相似文献

1
Structural and mechanistic insights into unusual thiol disulfide oxidoreductase.
J Biol Chem. 2012 Jan 13;287(3):1688-97. doi: 10.1074/jbc.M111.288316. Epub 2011 Nov 28.
2
BcfH Is a Trimeric Thioredoxin-Like Bifunctional Enzyme with Both Thiol Oxidase and Disulfide Isomerase Activities.
Antioxid Redox Signal. 2021 Jul;35(1):21-39. doi: 10.1089/ars.2020.8218. Epub 2021 Apr 12.
10
Thioredoxin and protein-disulfide isomerase selectivity for redox regulation of proteins in Corynebacterium glutamicum.
J Gen Appl Microbiol. 2020 Nov 30;66(5):245-255. doi: 10.2323/jgam.2019.09.002. Epub 2019 Dec 27.

引用本文的文献

1
Two cysteines control Tse1 secretion by H1-T6SS in Pseudomonas aeruginosa.
Protein Sci. 2025 Aug;34(8):e70226. doi: 10.1002/pro.70226.
2
Analytical Methods for Assessing Thiol Antioxidants in Biological Fluids: A Review.
Molecules. 2024 Sep 18;29(18):4433. doi: 10.3390/molecules29184433.
3
Cysteine Oxidation in Proteins: Structure, Biophysics, and Simulation.
Biochemistry. 2022 Oct 18;61(20):2165-2176. doi: 10.1021/acs.biochem.2c00349. Epub 2022 Sep 26.
4
Biochemical Function, Molecular Structure and Evolution of an Atypical Thioredoxin Reductase from .
Front Microbiol. 2017 Sep 29;8:1855. doi: 10.3389/fmicb.2017.01855. eCollection 2017.
5
Measuring protein reduction potentials using 15N HSQC NMR spectroscopy.
Chem Commun (Camb). 2013 Mar 4;49(18):1847-9. doi: 10.1039/c3cc38952a. Epub 2013 Jan 29.

本文引用的文献

2
The reduction potential of the active site disulfides of human protein disulfide isomerase limits oxidation of the enzyme by Ero1α.
J Biol Chem. 2010 Sep 17;285(38):29200-7. doi: 10.1074/jbc.M110.156596. Epub 2010 Jul 23.
4
Mechanisms of oxidative protein folding in the bacterial cell envelope.
Antioxid Redox Signal. 2010 Oct;13(8):1231-46. doi: 10.1089/ars.2010.3187.
5
In vivo oxidative protein folding can be facilitated by oxidation-reduction cycling.
Mol Microbiol. 2010 Jan;75(1):13-28. doi: 10.1111/j.1365-2958.2009.06952.x. Epub 2009 Dec 3.
6
How thioredoxin dissociates its mixed disulfide.
PLoS Comput Biol. 2009 Aug;5(8):e1000461. doi: 10.1371/journal.pcbi.1000461. Epub 2009 Aug 13.
8
Heterologous expression of lipase in Escherichia coli is limited by folding and disulfide bond formation.
Appl Microbiol Biotechnol. 2008 Nov;81(1):79-87. doi: 10.1007/s00253-008-1644-6. Epub 2008 Aug 29.
10
The CXXC motif is more than a redox rheostat.
J Biol Chem. 2007 Sep 28;282(39):28823-28833. doi: 10.1074/jbc.M705291200. Epub 2007 Aug 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验