Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, USA.
ACS Nano. 2012 Jan 24;6(1):760-70. doi: 10.1021/nn2042384. Epub 2011 Dec 8.
Here we investigated the interactions between lectins and carbohydrates using field-effect transistor (FET) devices comprised of chemically converted graphene (CCG) and single-walled carbon nanotubes (SWNTs). Pyrene- and porphyrin-based glycoconjugates were functionalized noncovalently on the surface of CCG-FET and SWNT-FET devices, which were then treated with 2 μM nonspecific and specific lectins. In particular, three different lectins (PA-IL, PA-IIL, and ConA) and three carbohydrate epitopes (galactose, fucose, and mannose) were tested. The responses of 36 different devices were compared and rationalized using computer-aided models of carbon nanostructure/glycoconjugate interactions. Glycoconjugate surface coverage in addition to one-dimensional structures of SWNTs resulted in optimal lectin detection. Additionally, lectin titration data of SWNT- and CCG-based biosensors were used to calculate lectin dissociation constants (K(d)) and compare them to the values obtained from the isothermal titration microcalorimetry technique.
在这里,我们使用由化学转化石墨烯(CCG)和单壁碳纳米管(SWNT)组成的场效应晶体管(FET)器件研究了凝集素和碳水化合物之间的相互作用。芘基和卟啉基糖缀合物通过非共价键在 CCG-FET 和 SWNT-FET 器件的表面上进行功能化,然后用 2 μM 非特异性和特异性凝集素进行处理。特别地,测试了三种不同的凝集素(PA-IL、PA-IIL 和 ConA)和三种碳水化合物表位(半乳糖、岩藻糖和甘露糖)。使用碳纳米结构/糖缀合物相互作用的计算机辅助模型比较和合理化了 36 种不同器件的响应。糖缀合物表面覆盖率以及 SWNTs 的一维结构导致了最佳的凝集素检测。此外,基于 SWNT 和 CCG 的生物传感器的凝集素滴定数据用于计算凝集素解离常数(Kd),并将其与从等温滴定量热技术获得的值进行比较。