Suppr超能文献

相似文献

2
Nanoelectronic detection of lectin-carbohydrate interactions using carbon nanotubes.
Nano Lett. 2011 Jan 12;11(1):170-5. doi: 10.1021/nl103286k. Epub 2010 Dec 6.
3
Functionalized multilayered graphene platform for urea sensor.
ACS Nano. 2012 Jan 24;6(1):168-75. doi: 10.1021/nn203210s. Epub 2011 Dec 2.
4
Single-walled carbon nanotube field-effect transistors with graphene oxide passivation for fast, sensitive, and selective protein detection.
Biosens Bioelectron. 2013 Apr 15;42:186-92. doi: 10.1016/j.bios.2012.10.041. Epub 2012 Oct 23.
5
Carbon nanotubes for the label-free detection of biomarkers.
ACS Nano. 2013 Sep 24;7(9):7448-53. doi: 10.1021/nn404544e. Epub 2013 Sep 13.
6
Label-free electronic detection of bio-toxins using aligned carbon nanotubes.
Biosens Bioelectron. 2013 May 15;43:143-7. doi: 10.1016/j.bios.2012.12.019. Epub 2012 Dec 14.
7
Carbon nanotubes-based label-free affinity sensors for environmental monitoring.
Appl Biochem Biotechnol. 2013 Jul;170(5):1011-25. doi: 10.1007/s12010-013-0233-z. Epub 2013 May 8.
8
Carbohydrate conjugation through microwave-assisted functionalization of single-walled carbon nanotubes using perfluorophenyl azides.
Carbohydr Res. 2015 Mar 20;405:33-8. doi: 10.1016/j.carres.2014.09.006. Epub 2014 Dec 13.
9
Functionalized single-walled carbon nanohorns for electrochemical biosensing.
Biosens Bioelectron. 2010 Jun 15;25(10):2194-9. doi: 10.1016/j.bios.2010.02.027. Epub 2010 Mar 3.

引用本文的文献

1
Polyvalent Glycan Functionalized Quantum Nanorods as Mechanistic Probes for Shape-Selective Multivalent Lectin-Glycan Recognition.
ACS Appl Nano Mater. 2023 Mar 14;6(6):4201-4213. doi: 10.1021/acsanm.2c05247. eCollection 2023 Mar 24.
2
Glycopolymer-Wrapped Carbon Nanotubes Show Distinct Interaction of Carbohydrates With Lectins.
Front Chem. 2022 Mar 3;10:852988. doi: 10.3389/fchem.2022.852988. eCollection 2022.
3
Graphene-Based Nanomaterials for Biomedical Imaging.
Adv Exp Med Biol. 2022;1351:125-148. doi: 10.1007/978-981-16-4923-3_7.
4
Ion Sensing with Solution-Gated Graphene Field-Effect Sensors in the Frequency Domain.
IEEE Sens J. 2019 Oct 1;19(19):8758-8766. doi: 10.1109/jsen.2019.2921706. Epub 2019 Jun 7.
5
Nanoelectromechanical Sensors Based on Suspended 2D Materials.
Research (Wash D C). 2020 Jul 20;2020:8748602. doi: 10.34133/2020/8748602. eCollection 2020.
6
Investigation of C-terminal domain of SARS nucleocapsid protein-Duplex DNA interaction using transistors and binding-site models.
Sens Actuators B Chem. 2014 Mar 31;193:334-339. doi: 10.1016/j.snb.2013.11.087. Epub 2013 Dec 1.
9
Non-Covalent Functionalization of Carbon Nanotubes for Electrochemical Biosensor Development.
Sensors (Basel). 2019 Jan 18;19(2):392. doi: 10.3390/s19020392.

本文引用的文献

1
A glycopeptide dendrimer inhibitor of the galactose-specific lectin LecA and of Pseudomonas aeruginosa biofilms.
Angew Chem Int Ed Engl. 2011 Nov 4;50(45):10631-5. doi: 10.1002/anie.201104342. Epub 2011 Sep 14.
2
AFM investigation of Pseudomonas aeruginosa lectin LecA (PA-IL) filaments induced by multivalent glycoclusters.
Chem Commun (Camb). 2011 Sep 7;47(33):9483-5. doi: 10.1039/c1cc13097h. Epub 2011 Jul 25.
3
Combining glycomimetic and multivalent strategies toward designing potent bacterial lectin inhibitors.
Chemistry. 2011 May 27;17(23):6545-62. doi: 10.1002/chem.201003402. Epub 2011 Apr 26.
4
The enzymatic oxidation of graphene oxide.
ACS Nano. 2011 Mar 22;5(3):2098-108. doi: 10.1021/nn103265h. Epub 2011 Feb 23.
6
Nanoelectronic detection of lectin-carbohydrate interactions using carbon nanotubes.
Nano Lett. 2011 Jan 12;11(1):170-5. doi: 10.1021/nl103286k. Epub 2010 Dec 6.
7
Graphene oxide as a chemically tunable platform for optical applications.
Nat Chem. 2010 Dec;2(12):1015-24. doi: 10.1038/nchem.907. Epub 2010 Nov 23.
8
Label-free detection of lectins on carbohydrate-modified boron-doped diamond surfaces.
Anal Chem. 2010 Oct 1;82(19):8203-10. doi: 10.1021/ac1016387.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验