Suppr超能文献

核糖体结合部位修饰导致对利奈唑胺的耐药性。

Resistance to linezolid caused by modifications at its binding site on the ribosome.

机构信息

Department of Systems Biology and Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.

出版信息

Antimicrob Agents Chemother. 2012 Feb;56(2):603-12. doi: 10.1128/AAC.05702-11. Epub 2011 Dec 5.

Abstract

Linezolid is an oxazolidinone antibiotic in clinical use for the treatment of serious infections of resistant Gram-positive bacteria. It inhibits protein synthesis by binding to the peptidyl transferase center on the ribosome. Almost all known resistance mechanisms involve small alterations to the linezolid binding site, so this review will therefore focus on the various changes that can adversely affect drug binding and confer resistance. High-resolution structures of linezolid bound to the 50S ribosomal subunit show that it binds in a deep cleft that is surrounded by 23S rRNA nucleotides. Mutation of 23S rRNA has for some time been established as a linezolid resistance mechanism. Although ribosomal proteins L3 and L4 are located further away from the bound drug, mutations in specific regions of these proteins are increasingly being associated with linezolid resistance. However, very little evidence has been presented to confirm this. Furthermore, recent findings on the Cfr methyltransferase underscore the modification of 23S rRNA as a highly effective and transferable form of linezolid resistance. On a positive note, detailed knowledge of the linezolid binding site has facilitated the design of a new generation of oxazolidinones that show improved properties against the known resistance mechanisms.

摘要

利奈唑胺是一种临床用于治疗耐药革兰阳性菌严重感染的噁唑烷酮类抗生素。它通过与核糖体的肽酰转移酶中心结合来抑制蛋白质合成。几乎所有已知的耐药机制都涉及到利奈唑胺结合位点的微小改变,因此本综述将重点介绍可能对药物结合产生不利影响并导致耐药性的各种变化。利奈唑胺与 50S 核糖体亚基结合的高分辨率结构表明,它结合在一个被 23S rRNA 核苷酸包围的深裂缝中。23S rRNA 突变已被确定为利奈唑胺耐药机制已有一段时间。尽管核糖体蛋白 L3 和 L4 位于与结合药物更远的位置,但这些蛋白的特定区域的突变越来越多地与利奈唑胺耐药性相关。然而,几乎没有证据证实这一点。此外,关于 Cfr 甲基转移酶的最新发现强调了 23S rRNA 修饰作为一种高效且可转移的利奈唑胺耐药形式。值得注意的是,对利奈唑胺结合位点的详细了解促进了新一代噁唑烷酮类药物的设计,这些药物对已知的耐药机制表现出了更好的特性。

相似文献

1
Resistance to linezolid caused by modifications at its binding site on the ribosome.
Antimicrob Agents Chemother. 2012 Feb;56(2):603-12. doi: 10.1128/AAC.05702-11. Epub 2011 Dec 5.
3
R chi-01, a new family of oxazolidinones that overcome ribosome-based linezolid resistance.
Antimicrob Agents Chemother. 2008 Oct;52(10):3550-7. doi: 10.1128/AAC.01193-07. Epub 2008 Jul 28.
4
Ribosomal and non-ribosomal resistance to oxazolidinones: species-specific idiosyncrasy of ribosomal alterations.
Mol Microbiol. 2002 Dec;46(5):1295-304. doi: 10.1046/j.1365-2958.2002.03242.x.
7
Mutations in 23S rRNA at the peptidyl transferase center and their relationship to linezolid binding and cross-resistance.
Antimicrob Agents Chemother. 2010 Nov;54(11):4705-13. doi: 10.1128/AAC.00644-10. Epub 2010 Aug 9.
9
Linezolid update: stable in vitro activity following more than a decade of clinical use and summary of associated resistance mechanisms.
Drug Resist Updat. 2014 Apr;17(1-2):1-12. doi: 10.1016/j.drup.2014.04.002. Epub 2014 Apr 6.
10
Linezolid resistance in Brazilian Staphylococcus hominis strains is associated with L3 and 23S rRNA ribosomal mutations.
Antimicrob Agents Chemother. 2013 Aug;57(8):4082-3. doi: 10.1128/AAC.00437-13. Epub 2013 May 20.

引用本文的文献

1
4
Identification of genetic mutations conferring tedizolid resistance in MRSA mutants.
Eur J Clin Microbiol Infect Dis. 2025 May 13. doi: 10.1007/s10096-025-05157-x.
5
Antibiotic resistance and preventive strategies in foodborne pathogenic bacteria: a comprehensive review.
Food Sci Biotechnol. 2025 Jan 29;34(10):2101-2129. doi: 10.1007/s10068-024-01767-x. eCollection 2025 Jun.
6
Efflux pumps and membrane permeability contribute to intrinsic antibiotic resistance in Mycobacterium abscessus.
PLoS Pathog. 2025 Apr 10;21(4):e1013027. doi: 10.1371/journal.ppat.1013027. eCollection 2025 Apr.
8
Comparative In Vitro Drug Susceptibility Study of Five Oxazolidinones Against in Hainan, China.
Pathogens. 2025 Feb 24;14(3):218. doi: 10.3390/pathogens14030218.
9
Recent advancements in tuberculosis (TB) treatment regimens.
J Family Med Prim Care. 2025 Feb;14(2):521-525. doi: 10.4103/jfmpc.jfmpc_1237_24. Epub 2025 Feb 21.
10
Diversity in Adaptive Evolution of Methicillin-Resistant Clinical Isolates Under Exposure to Continuous Linezolid Stress in vitro.
Infect Drug Resist. 2025 Feb 11;18:819-834. doi: 10.2147/IDR.S493139. eCollection 2025.

本文引用的文献

1
Linezolid Resistance in Staphylococci.
Pharmaceuticals (Basel). 2010 Jun 24;3(7):1988-2006. doi: 10.3390/ph3071988.
3
Detection of the staphylococcal multiresistance gene cfr in Proteus vulgaris of food animal origin.
J Antimicrob Chemother. 2011 Nov;66(11):2521-6. doi: 10.1093/jac/dkr322. Epub 2011 Jul 26.
4
Outbreak of linezolid-resistant Staphylococcus haemolyticus in an Italian intensive care unit.
Eur J Clin Microbiol Infect Dis. 2012 Apr;31(4):523-7. doi: 10.1007/s10096-011-1343-6. Epub 2011 Jul 27.
7
Low fitness cost of the multidrug resistance gene cfr.
Antimicrob Agents Chemother. 2011 Aug;55(8):3714-9. doi: 10.1128/AAC.00153-11. Epub 2011 Jun 6.
9
Structural basis for methyl transfer by a radical SAM enzyme.
Science. 2011 May 27;332(6033):1089-92. doi: 10.1126/science.1205358. Epub 2011 Apr 28.
10
Inactivation of the indigenous methyltransferase RlmN in Staphylococcus aureus increases linezolid resistance.
Antimicrob Agents Chemother. 2011 Jun;55(6):2989-91. doi: 10.1128/AAC.00183-11. Epub 2011 Mar 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验