Suppr超能文献

先验知识可改善从皮质电图信号中解码手指屈曲的能力。

Prior knowledge improves decoding of finger flexion from electrocorticographic signals.

作者信息

Wang Z, Ji Q, Miller K J, Schalk Gerwin

机构信息

Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute Troy, NY, USA.

出版信息

Front Neurosci. 2011 Nov 28;5:127. doi: 10.3389/fnins.2011.00127. eCollection 2011.

Abstract

Brain-computer interfaces (BCIs) use brain signals to convey a user's intent. Some BCI approaches begin by decoding kinematic parameters of movements from brain signals, and then proceed to using these signals, in absence of movements, to allow a user to control an output. Recent results have shown that electrocorticographic (ECoG) recordings from the surface of the brain in humans can give information about kinematic parameters (e.g., hand velocity or finger flexion). The decoding approaches in these studies usually employed classical classification/regression algorithms that derive a linear mapping between brain signals and outputs. However, they typically only incorporate little prior information about the target movement parameter. In this paper, we incorporate prior knowledge using a Bayesian decoding method, and use it to decode finger flexion from ECoG signals. Specifically, we exploit the constraints that govern finger flexion and incorporate these constraints in the construction, structure, and the probabilistic functions of the prior model of a switched non-parametric dynamic system (SNDS). Given a measurement model resulting from a traditional linear regression method, we decoded finger flexion using posterior estimation that combined the prior and measurement models. Our results show that the application of the Bayesian decoding model, which incorporates prior knowledge, improves decoding performance compared to the application of a linear regression model, which does not incorporate prior knowledge. Thus, the results presented in this paper may ultimately lead to neurally controlled hand prostheses with full fine-grained finger articulation.

摘要

脑机接口(BCIs)利用脑信号来传达用户意图。一些脑机接口方法首先从脑信号中解码运动的运动学参数,然后在没有运动的情况下利用这些信号让用户控制输出。最近的研究结果表明,人类大脑表面的皮层脑电图(ECoG)记录能够提供有关运动学参数(如手部速度或手指弯曲)的信息。这些研究中的解码方法通常采用经典的分类/回归算法,该算法在脑信号和输出之间推导线性映射。然而,它们通常只纳入了关于目标运动参数的很少的先验信息。在本文中,我们使用贝叶斯解码方法纳入先验知识,并利用它从ECoG信号中解码手指弯曲。具体来说,我们利用控制手指弯曲的约束条件,并将这些约束条件纳入切换非参数动态系统(SNDS)先验模型的构建、结构和概率函数中。给定一个由传统线性回归方法得到的测量模型,我们使用结合了先验模型和测量模型的后验估计来解码手指弯曲。我们的结果表明,与未纳入先验知识的线性回归模型相比,纳入先验知识的贝叶斯解码模型的应用提高了解码性能。因此,本文所呈现的结果最终可能会促成具有全精细手指关节活动的神经控制手部假肢。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c744/3226159/30b3853a6cd6/fnins-05-00127-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验