Suppr超能文献

正则化常见空间模式以改进脑机接口设计:统一理论与新算法。

Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms.

机构信息

Signal Processing Department, Institute for Infocomm Research, 138632 Singapore.

出版信息

IEEE Trans Biomed Eng. 2011 Feb;58(2):355-62. doi: 10.1109/TBME.2010.2082539. Epub 2010 Sep 30.

Abstract

One of the most popular feature extraction algorithms for brain-computer interfaces (BCI) is common spatial patterns (CSPs). Despite its known efficiency and widespread use, CSP is also known to be very sensitive to noise and prone to overfitting. To address this issue, it has been recently proposed to regularize CSP. In this paper, we present a simple and unifying theoretical framework to design such a regularized CSP (RCSP). We then present a review of existing RCSP algorithms and describe how to cast them in this framework. We also propose four new RCSP algorithms. Finally, we compare the performances of 11 different RCSP (including the four new ones and the original CSP), on electroencephalography data from 17 subjects, from BCI competition datasets. Results showed that the best RCSP methods can outperform CSP by nearly 10% in median classification accuracy and lead to more neurophysiologically relevant spatial filters. They also enable us to perform efficient subject-to-subject transfer. Overall, the best RCSP algorithms were CSP with Tikhonov regularization and weighted Tikhonov regularization, both proposed in this paper.

摘要

脑机接口(BCI)中最流行的特征提取算法之一是共空间模式(CSP)。尽管 CSP 已知效率高且应用广泛,但它也容易受到噪声的影响并且容易过拟合。为了解决这个问题,最近有人提出对 CSP 进行正则化。在本文中,我们提出了一个简单而统一的理论框架来设计这种正则化 CSP(RCSP)。然后,我们回顾了现有的 RCSP 算法,并描述了如何将它们纳入该框架。我们还提出了四种新的 RCSP 算法。最后,我们在来自 17 名受试者的脑电(EEG)数据上比较了 11 种不同的 RCSP(包括四种新算法和原始 CSP)在 BCI 竞赛数据集上的性能。结果表明,最好的 RCSP 方法在分类准确性的中位数上可以比 CSP 高出近 10%,并且产生更具神经生理学相关性的空间滤波器。它们还使我们能够进行高效的受试者间转移。总体而言,本文提出的 Tikhonov 正则化和加权 Tikhonov 正则化的 CSP 是最好的 RCSP 算法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验