Suppr超能文献

下一代分析工具用于复杂疾病的大规模遗传流行病学研究。

Next generation analytic tools for large scale genetic epidemiology studies of complex diseases.

机构信息

Epidemiology and Genetics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA.

出版信息

Genet Epidemiol. 2012 Jan;36(1):22-35. doi: 10.1002/gepi.20652. Epub 2011 Dec 6.

Abstract

Over the past several years, genome-wide association studies (GWAS) have succeeded in identifying hundreds of genetic markers associated with common diseases. However, most of these markers confer relatively small increments of risk and explain only a small proportion of familial clustering. To identify obstacles to future progress in genetic epidemiology research and provide recommendations to NIH for overcoming these barriers, the National Cancer Institute sponsored a workshop entitled "Next Generation Analytic Tools for Large-Scale Genetic Epidemiology Studies of Complex Diseases" on September 15-16, 2010. The goal of the workshop was to facilitate discussions on (1) statistical strategies and methods to efficiently identify genetic and environmental factors contributing to the risk of complex disease; and (2) how to develop, apply, and evaluate these strategies for the design, analysis, and interpretation of large-scale complex disease association studies in order to guide NIH in setting the future agenda in this area of research. The workshop was organized as a series of short presentations covering scientific (gene-gene and gene-environment interaction, complex phenotypes, and rare variants and next generation sequencing) and methodological (simulation modeling and computational resources and data management) topic areas. Specific needs to advance the field were identified during each session and are summarized.

摘要

在过去的几年中,全基因组关联研究(GWAS)已经成功确定了数百个与常见疾病相关的遗传标记。然而,这些标记大多数只带来相对较小的风险增加,并且只能解释家族聚集的一小部分原因。为了确定遗传流行病学研究未来进展的障碍,并为 NIH 克服这些障碍提供建议,美国国家癌症研究所于 2010 年 9 月 15 日至 16 日举办了一次题为“复杂疾病大规模遗传流行病学研究的下一代分析工具”的研讨会。该研讨会的目标是促进以下方面的讨论:(1) 用于识别导致复杂疾病风险的遗传和环境因素的统计策略和方法;以及 (2) 如何开发、应用和评估这些策略,用于设计、分析和解释大规模复杂疾病关联研究,以指导 NIH 在该研究领域制定未来的议程。研讨会组织为一系列简短的演讲,涵盖了科学(基因-基因和基因-环境相互作用、复杂表型和罕见变体以及下一代测序)和方法学(模拟建模和计算资源以及数据管理)主题领域。在每次会议期间都确定了推进该领域的具体需求,并进行了总结。

相似文献

6
Detecting Familial Aggregation.检测家族聚集性。
Methods Mol Biol. 2017;1666:133-169. doi: 10.1007/978-1-4939-7274-6_8.
10
Genetic Epidemiology of Complex Phenotypes.复杂表型的遗传流行病学。
Methods Mol Biol. 2021;2249:335-367. doi: 10.1007/978-1-0716-1138-8_19.

引用本文的文献

3
Facilitating cancer systems epidemiology research.促进癌症系统流行病学研究。
PLoS One. 2021 Dec 31;16(12):e0255328. doi: 10.1371/journal.pone.0255328. eCollection 2021.
8
Genetic Simulation Resources and the GSR Certification Program.遗传模拟资源与GSR认证计划。
Bioinformatics. 2019 Feb 15;35(4):709-710. doi: 10.1093/bioinformatics/bty666.

本文引用的文献

5
The impact of next-generation sequencing on genomics.下一代测序对基因组学的影响。
J Genet Genomics. 2011 Mar 20;38(3):95-109. doi: 10.1016/j.jgg.2011.02.003. Epub 2011 Mar 15.
7
Testing for an unusual distribution of rare variants.检测罕见变异的异常分布。
PLoS Genet. 2011 Mar;7(3):e1001322. doi: 10.1371/journal.pgen.1001322. Epub 2011 Mar 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验