Suppr超能文献

用于复杂疾病基因组全关联研究后的遗传模拟工具。

Genetic simulation tools for post-genome wide association studies of complex diseases.

作者信息

Chen Huann-Sheng, Hutter Carolyn M, Mechanic Leah E, Amos Christopher I, Bafna Vineet, Hauser Elizabeth R, Hernandez Ryan D, Li Chun, Liberles David A, McAllister Kimberly, Moore Jason H, Paltoo Dina N, Papanicolaou George J, Peng Bo, Ritchie Marylyn D, Rosenfeld Gabriel, Witte John S, Gillanders Elizabeth M, Feuer Eric J

机构信息

Surveillance Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, NIH, Bethesda, MD 20892.

Division of Genomic Medicine, National Human Genome Research Institute, NIH, Bethesda, MD 20892.

出版信息

Genet Epidemiol. 2015 Jan;39(1):11-19. doi: 10.1002/gepi.21870. Epub 2014 Nov 4.

Abstract

Genetic simulation programs are used to model data under specified assumptions to facilitate the understanding and study of complex genetic systems. Standardized data sets generated using genetic simulation are essential for the development and application of novel analytical tools in genetic epidemiology studies. With continuing advances in high-throughput genomic technologies and generation and analysis of larger, more complex data sets, there is a need for updating current approaches in genetic simulation modeling. To provide a forum to address current and emerging challenges in this area, the National Cancer Institute (NCI) sponsored a workshop, entitled "Genetic Simulation Tools for Post-Genome Wide Association Studies of Complex Diseases" at the National Institutes of Health (NIH) in Bethesda, Maryland on March 11-12, 2014. The goals of the workshop were to (1) identify opportunities, challenges, and resource needs for the development and application of genetic simulation models; (2) improve the integration of tools for modeling and analysis of simulated data; and (3) foster collaborations to facilitate development and applications of genetic simulation. During the course of the meeting, the group identified challenges and opportunities for the science of simulation, software and methods development, and collaboration. This paper summarizes key discussions at the meeting, and highlights important challenges and opportunities to advance the field of genetic simulation.

摘要

遗传模拟程序用于在特定假设下对数据进行建模,以促进对复杂遗传系统的理解和研究。使用遗传模拟生成的标准化数据集对于遗传流行病学研究中新型分析工具的开发和应用至关重要。随着高通量基因组技术的不断进步以及更大、更复杂数据集的生成和分析,有必要更新遗传模拟建模的当前方法。为了提供一个论坛来应对该领域当前和新出现的挑战,美国国立癌症研究所(NCI)于2014年3月11日至12日在马里兰州贝塞斯达的国立卫生研究院(NIH)主办了一次题为“复杂疾病基因组全关联研究后的遗传模拟工具”的研讨会。该研讨会的目标是:(1)确定遗传模拟模型开发和应用的机遇、挑战及资源需求;(2)改善模拟数据建模和分析工具的整合;(3)促进合作以推动遗传模拟的开发和应用。在会议过程中,该小组确定了模拟科学、软件和方法开发以及合作方面的挑战和机遇。本文总结了会议的关键讨论内容,并突出了推进遗传模拟领域发展的重要挑战和机遇。

相似文献

1
Genetic simulation tools for post-genome wide association studies of complex diseases.
Genet Epidemiol. 2015 Jan;39(1):11-19. doi: 10.1002/gepi.21870. Epub 2014 Nov 4.
2
Next generation analytic tools for large scale genetic epidemiology studies of complex diseases.
Genet Epidemiol. 2012 Jan;36(1):22-35. doi: 10.1002/gepi.20652. Epub 2011 Dec 6.
3
Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
J Phys Condens Matter. 2008 Feb 13;20(6):060301. doi: 10.1088/0953-8984/20/06/060301. Epub 2008 Jan 24.
4
5
Reproducible simulations of realistic samples for next-generation sequencing studies using Variant Simulation Tools.
Genet Epidemiol. 2015 Jan;39(1):45-52. doi: 10.1002/gepi.21867. Epub 2014 Nov 13.
6
7
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
8
An overview of population genetic data simulation.
J Comput Biol. 2012 Jan;19(1):42-54. doi: 10.1089/cmb.2010.0188. Epub 2011 Dec 9.
9
Genetic Simulation Resources: a website for the registration and discovery of genetic data simulators.
Bioinformatics. 2013 Apr 15;29(8):1101-2. doi: 10.1093/bioinformatics/btt094. Epub 2013 Feb 23.
10

引用本文的文献

1
GENLIB: new function to simulate haplotype transmission in large complex genealogies.
Bioinformatics. 2023 Mar 1;39(3). doi: 10.1093/bioinformatics/btad136.
2
On the application, reporting, and sharing of in silico simulations for genetic studies.
Genet Epidemiol. 2021 Mar;45(2):131-141. doi: 10.1002/gepi.22362. Epub 2020 Oct 16.
3
Host and Microbiome Genome-Wide Association Studies: Current State and Challenges.
Front Genet. 2019 Jan 22;9:637. doi: 10.3389/fgene.2018.00637. eCollection 2018.
4
Presidential address: Six open questions to genetic epidemiologists.
Genet Epidemiol. 2019 Apr;43(3):242-249. doi: 10.1002/gepi.22191. Epub 2019 Jan 19.
5
sim1000G: a user-friendly genetic variant simulator in R for unrelated individuals and family-based designs.
BMC Bioinformatics. 2019 Jan 15;20(1):26. doi: 10.1186/s12859-019-2611-1.
6
Analysis validation has been neglected in the Age of Reproducibility.
PLoS Biol. 2018 Dec 10;16(12):e3000070. doi: 10.1371/journal.pbio.3000070. eCollection 2018 Dec.
7
Genetic Simulation Resources and the GSR Certification Program.
Bioinformatics. 2019 Feb 15;35(4):709-710. doi: 10.1093/bioinformatics/bty666.
8
9
A Model of Compound Heterozygous, Loss-of-Function Alleles Is Broadly Consistent with Observations from Complex-Disease GWAS Datasets.
PLoS Genet. 2017 Jan 19;13(1):e1006573. doi: 10.1371/journal.pgen.1006573. eCollection 2017 Jan.
10
GESDB: a platform of simulation resources for genetic epidemiology studies.
Database (Oxford). 2016 May 30;2016. doi: 10.1093/database/baw082. Print 2016.

本文引用的文献

1
Genetic data simulators and their applications: an overview.
Genet Epidemiol. 2015 Jan;39(1):2-10. doi: 10.1002/gepi.21876. Epub 2014 Dec 13.
2
The impact of population demography and selection on the genetic architecture of complex traits.
PLoS Genet. 2014 May 29;10(5):e1004379. doi: 10.1371/journal.pgen.1004379. eCollection 2014.
3
Searching for missing heritability: designing rare variant association studies.
Proc Natl Acad Sci U S A. 2014 Jan 28;111(4):E455-64. doi: 10.1073/pnas.1322563111. Epub 2014 Jan 17.
5
HuPSON: the human physiology simulation ontology.
J Biomed Semantics. 2013 Nov 22;4(1):35. doi: 10.1186/2041-1480-4-35.
6
Evaluating empirical bounds on complex disease genetic architecture.
Nat Genet. 2013 Dec;45(12):1418-27. doi: 10.1038/ng.2804. Epub 2013 Oct 20.
7
On the need for mechanistic models in computational genomics and metagenomics.
Genome Biol Evol. 2013;5(10):2008-18. doi: 10.1093/gbe/evt151.
8
A rare nonsynonymous sequence variant in C3 is associated with high risk of age-related macular degeneration.
Nat Genet. 2013 Nov;45(11):1371-4. doi: 10.1038/ng.2740. Epub 2013 Sep 15.
9
Whole-genome sequence-based analysis of high-density lipoprotein cholesterol.
Nat Genet. 2013 Aug;45(8):899-901. doi: 10.1038/ng.2671. Epub 2013 Jun 16.
10
Population genetics of rare variants and complex diseases.
Hum Hered. 2012;74(3-4):118-28. doi: 10.1159/000346826. Epub 2013 Apr 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验